Metamath Proof Explorer


Theorem ssmxidllem

Description: The set P used in the proof of ssmxidl satisfies the condition of Zorn's Lemma. (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Hypotheses ssmxidl.1 B=BaseR
ssmxidllem.1 P=pLIdealR|pBIp
ssmxidllem.2 φRRing
ssmxidllem.3 φILIdealR
ssmxidllem.4 φIB
ssmxidllem2.1 φZP
ssmxidllem2.2 φZ
ssmxidllem2.3 φ[⊂]OrZ
Assertion ssmxidllem φZP

Proof

Step Hyp Ref Expression
1 ssmxidl.1 B=BaseR
2 ssmxidllem.1 P=pLIdealR|pBIp
3 ssmxidllem.2 φRRing
4 ssmxidllem.3 φILIdealR
5 ssmxidllem.4 φIB
6 ssmxidllem2.1 φZP
7 ssmxidllem2.2 φZ
8 ssmxidllem2.3 φ[⊂]OrZ
9 neeq1 p=ZpBZB
10 sseq2 p=ZIpIZ
11 9 10 anbi12d p=ZpBIpZBIZ
12 2 ssrab3 PLIdealR
13 6 12 sstrdi φZLIdealR
14 13 sselda φjZjLIdealR
15 eqid LIdealR=LIdealR
16 1 15 lidlss jLIdealRjB
17 14 16 syl φjZjB
18 17 ralrimiva φjZjB
19 unissb ZBjZjB
20 18 19 sylibr φZB
21 3 adantr φjZRRing
22 eqid 0R=0R
23 15 22 lidl0cl RRingjLIdealR0Rj
24 21 14 23 syl2anc φjZ0Rj
25 n0i 0Rj¬j=
26 24 25 syl φjZ¬j=
27 26 reximdva0 φZjZ¬j=
28 7 27 mpdan φjZ¬j=
29 rexnal jZ¬j=¬jZj=
30 28 29 sylib φ¬jZj=
31 uni0c Z=jZj=
32 31 necon3abii Z¬jZj=
33 30 32 sylibr φZ
34 eluni2 aZiZai
35 eluni2 bZjZbj
36 34 35 anbi12i aZbZiZaijZbj
37 an32 φxBiZaijZφxBjZiZai
38 3 ad6antr φxBjZbjiZaiijRRing
39 13 ad5antr φxBjZbjiZaiZLIdealR
40 simp-4r φxBjZbjiZaijZ
41 39 40 sseldd φxBjZbjiZaijLIdealR
42 41 adantr φxBjZbjiZaiijjLIdealR
43 simp-6r φxBjZbjiZaiijxB
44 simpr φxBjZbjiZaiijij
45 simplr φxBjZbjiZaiijai
46 44 45 sseldd φxBjZbjiZaiijaj
47 eqid R=R
48 15 1 47 lidlmcl RRingjLIdealRxBajxRaj
49 38 42 43 46 48 syl22anc φxBjZbjiZaiijxRaj
50 simp-4r φxBjZbjiZaiijbj
51 eqid +R=+R
52 15 51 lidlacl RRingjLIdealRxRajbjxRa+Rbj
53 38 42 49 50 52 syl22anc φxBjZbjiZaiijxRa+Rbj
54 40 adantr φxBjZbjiZaiijjZ
55 elunii xRa+RbjjZxRa+RbZ
56 53 54 55 syl2anc φxBjZbjiZaiijxRa+RbZ
57 3 ad6antr φxBjZbjiZaijiRRing
58 39 adantr φxBjZbjiZaijiZLIdealR
59 simplr φxBjZbjiZaiiZ
60 59 adantr φxBjZbjiZaijiiZ
61 58 60 sseldd φxBjZbjiZaijiiLIdealR
62 simp-6r φxBjZbjiZaijixB
63 simplr φxBjZbjiZaijiai
64 15 1 47 lidlmcl RRingiLIdealRxBaixRai
65 57 61 62 63 64 syl22anc φxBjZbjiZaijixRai
66 simpr φxBjZbjiZaijiji
67 simp-4r φxBjZbjiZaijibj
68 66 67 sseldd φxBjZbjiZaijibi
69 15 51 lidlacl RRingiLIdealRxRaibixRa+Rbi
70 57 61 65 68 69 syl22anc φxBjZbjiZaijixRa+Rbi
71 elunii xRa+RbiiZxRa+RbZ
72 70 60 71 syl2anc φxBjZbjiZaijixRa+RbZ
73 8 ad5antr φxBjZbjiZai[⊂]OrZ
74 sorpssi [⊂]OrZiZjZijji
75 73 59 40 74 syl12anc φxBjZbjiZaiijji
76 56 72 75 mpjaodan φxBjZbjiZaixRa+RbZ
77 76 r19.29an φxBjZbjiZaixRa+RbZ
78 77 an32s φxBjZiZaibjxRa+RbZ
79 37 78 sylanb φxBiZaijZbjxRa+RbZ
80 79 r19.29an φxBiZaijZbjxRa+RbZ
81 80 anasss φxBiZaijZbjxRa+RbZ
82 36 81 sylan2b φxBaZbZxRa+RbZ
83 82 ralrimivva φxBaZbZxRa+RbZ
84 83 ralrimiva φxBaZbZxRa+RbZ
85 15 1 51 47 islidl ZLIdealRZBZxBaZbZxRa+RbZ
86 20 33 84 85 syl3anbrc φZLIdealR
87 6 sselda φjZjP
88 neeq1 p=jpBjB
89 sseq2 p=jIpIj
90 88 89 anbi12d p=jpBIpjBIj
91 90 2 elrab2 jPjLIdealRjBIj
92 87 91 sylib φjZjLIdealRjBIj
93 92 simprld φjZjB
94 eqid 1R=1R
95 1 94 pridln1 RRingjLIdealRjB¬1Rj
96 21 14 93 95 syl3anc φjZ¬1Rj
97 96 nrexdv φ¬jZ1Rj
98 eluni2 1RZjZ1Rj
99 97 98 sylnibr φ¬1RZ
100 15 1 94 lidl1el RRingZLIdealR1RZZ=B
101 3 86 100 syl2anc φ1RZZ=B
102 101 necon3bbid φ¬1RZZB
103 99 102 mpbid φZB
104 92 simprrd φjZIj
105 104 ralrimiva φjZIj
106 ssint IZjZIj
107 105 106 sylibr φIZ
108 intssuni ZZZ
109 7 108 syl φZZ
110 107 109 sstrd φIZ
111 103 110 jca φZBIZ
112 11 86 111 elrabd φZpLIdealR|pBIp
113 112 2 eleqtrrdi φZP