Metamath Proof Explorer


Theorem sticksstones3

Description: The range function on strictly monotone functions with finite domain and codomain is an surjective mapping onto K -elemental sets. (Contributed by metakunt, 28-Sep-2024)

Ref Expression
Hypotheses sticksstones3.1 φN0
sticksstones3.2 φK0
sticksstones3.3 B=a𝒫1N|a=K
sticksstones3.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
sticksstones3.5 F=zAranz
Assertion sticksstones3 φF:AontoB

Proof

Step Hyp Ref Expression
1 sticksstones3.1 φN0
2 sticksstones3.2 φK0
3 sticksstones3.3 B=a𝒫1N|a=K
4 sticksstones3.4 A=f|f:1K1Nx1Ky1Kx<yfx<fy
5 sticksstones3.5 F=zAranz
6 1 2 3 4 5 sticksstones2 φF:A1-1B
7 df-f1 F:A1-1BF:ABFunF-1
8 7 biimpi F:A1-1BF:ABFunF-1
9 8 simpld F:A1-1BF:AB
10 6 9 syl φF:AB
11 3 eleq2i wBwa𝒫1N|a=K
12 11 biimpi wBwa𝒫1N|a=K
13 12 adantl φwBwa𝒫1N|a=K
14 fveqeq2 a=wa=Kw=K
15 14 elrab wa𝒫1N|a=Kw𝒫1Nw=K
16 13 15 sylib φwBw𝒫1Nw=K
17 16 simpld φwBw𝒫1N
18 17 elpwid φwBw1N
19 18 sseld φwBcwc1N
20 19 imp φwBcwc1N
21 20 3impa φwBcwc1N
22 elfznn c1Nc
23 21 22 syl φwBcwc
24 23 nnred φwBcwc
25 24 3expa φwBcwc
26 25 ex φwBcwc
27 26 ssrdv φwBw
28 ltso <Or
29 soss w<Or<Orw
30 28 29 mpi w<Orw
31 27 30 syl φwB<Orw
32 fzfid φwB1NFin
33 32 18 ssfid φwBwFin
34 fz1iso <OrwwFinvvIsom<,<1ww
35 31 33 34 syl2anc φwBvvIsom<,<1ww
36 df-isom vIsom<,<1wwv:1w1-1 ontowx1wy1wx<yvx<vy
37 36 biimpi vIsom<,<1wwv:1w1-1 ontowx1wy1wx<yvx<vy
38 37 3ad2ant3 φwBvIsom<,<1wwv:1w1-1 ontowx1wy1wx<yvx<vy
39 38 simpld φwBvIsom<,<1wwv:1w1-1 ontow
40 16 simprd φwBw=K
41 oveq2 w=K1w=1K
42 41 f1oeq2d w=Kv:1w1-1 ontowv:1K1-1 ontow
43 40 42 syl φwBv:1w1-1 ontowv:1K1-1 ontow
44 43 biimpd φwBv:1w1-1 ontowv:1K1-1 ontow
45 44 3adant3 φwBvIsom<,<1wwv:1w1-1 ontowv:1K1-1 ontow
46 39 45 mpd φwBvIsom<,<1wwv:1K1-1 ontow
47 f1of v:1K1-1 ontowv:1Kw
48 46 47 syl φwBvIsom<,<1wwv:1Kw
49 48 ffnd φwBvIsom<,<1wwvFn1K
50 ovexd φwBvIsom<,<1ww1KV
51 49 50 fnexd φwBvIsom<,<1wwvV
52 18 3adant3 φwBvIsom<,<1www1N
53 fss v:1Kww1Nv:1K1N
54 48 52 53 syl2anc φwBvIsom<,<1wwv:1K1N
55 38 simprd φwBvIsom<,<1wwx1wy1wx<yvx<vy
56 biimp x<yvx<vyx<yvx<vy
57 56 a1i φwBvIsom<,<1wwx1wy1wx<yvx<vyx<yvx<vy
58 57 ralimdva φwBvIsom<,<1wwx1wy1wx<yvx<vyy1wx<yvx<vy
59 58 ralimdva φwBvIsom<,<1wwx1wy1wx<yvx<vyx1wy1wx<yvx<vy
60 55 59 mpd φwBvIsom<,<1wwx1wy1wx<yvx<vy
61 40 adantr φwBvIsom<,<1www=K
62 61 3impa φwBvIsom<,<1www=K
63 62 oveq2d φwBvIsom<,<1ww1w=1K
64 63 raleqdv φwBvIsom<,<1wwy1wx<yvx<vyy1Kx<yvx<vy
65 64 adantr φwBvIsom<,<1wwx1wy1wx<yvx<vyy1Kx<yvx<vy
66 63 65 raleqbidva φwBvIsom<,<1wwx1wy1wx<yvx<vyx1Ky1Kx<yvx<vy
67 60 66 mpbid φwBvIsom<,<1wwx1Ky1Kx<yvx<vy
68 54 67 jca φwBvIsom<,<1wwv:1K1Nx1Ky1Kx<yvx<vy
69 feq1 f=vf:1K1Nv:1K1N
70 fveq1 f=vfx=vx
71 fveq1 f=vfy=vy
72 70 71 breq12d f=vfx<fyvx<vy
73 72 imbi2d f=vx<yfx<fyx<yvx<vy
74 73 2ralbidv f=vx1Ky1Kx<yfx<fyx1Ky1Kx<yvx<vy
75 69 74 anbi12d f=vf:1K1Nx1Ky1Kx<yfx<fyv:1K1Nx1Ky1Kx<yvx<vy
76 51 68 75 elabd φwBvIsom<,<1wwvf|f:1K1Nx1Ky1Kx<yfx<fy
77 4 eleq2i vAvf|f:1K1Nx1Ky1Kx<yfx<fy
78 76 77 sylibr φwBvIsom<,<1wwvA
79 5 a1i φvAF=zAranz
80 simpr φvAz=vz=v
81 80 rneqd φvAz=vranz=ranv
82 simpr φvAvA
83 rnexg vAranvV
84 82 83 syl φvAranvV
85 79 81 82 84 fvmptd φvAFv=ranv
86 85 ex φvAFv=ranv
87 86 3ad2ant1 φwBvIsom<,<1wwvAFv=ranv
88 78 87 mpd φwBvIsom<,<1wwFv=ranv
89 dff1o2 v:1K1-1 ontowvFn1KFunv-1ranv=w
90 89 biimpi v:1K1-1 ontowvFn1KFunv-1ranv=w
91 90 simp3d v:1K1-1 ontowranv=w
92 46 91 syl φwBvIsom<,<1wwranv=w
93 88 92 eqtrd φwBvIsom<,<1wwFv=w
94 93 eqcomd φwBvIsom<,<1www=Fv
95 78 94 jca φwBvIsom<,<1wwvAw=Fv
96 95 3expa φwBvIsom<,<1wwvAw=Fv
97 96 ex φwBvIsom<,<1wwvAw=Fv
98 97 eximdv φwBvvIsom<,<1wwvvAw=Fv
99 35 98 mpd φwBvvAw=Fv
100 df-rex vAw=FvvvAw=Fv
101 99 100 sylibr φwBvAw=Fv
102 101 ralrimiva φwBvAw=Fv
103 10 102 jca φF:ABwBvAw=Fv
104 dffo3 F:AontoBF:ABwBvAw=Fv
105 104 a1i φF:AontoBF:ABwBvAw=Fv
106 103 105 mpbird φF:AontoB