Metamath Proof Explorer


Theorem supcnvlimsup

Description: If a function on a set of upper integers has a real superior limit, the supremum of the rightmost parts of the function, converges to that superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses supcnvlimsup.m φ M
supcnvlimsup.z Z = M
supcnvlimsup.f φ F : Z
supcnvlimsup.r φ lim sup F
Assertion supcnvlimsup φ k Z sup ran F k * < lim sup F

Proof

Step Hyp Ref Expression
1 supcnvlimsup.m φ M
2 supcnvlimsup.z Z = M
3 supcnvlimsup.f φ F : Z
4 supcnvlimsup.r φ lim sup F
5 3 adantr φ n Z F : Z
6 id n Z n Z
7 2 6 uzssd2 n Z n Z
8 7 adantl φ n Z n Z
9 5 8 feqresmpt φ n Z F n = m n F m
10 9 rneqd φ n Z ran F n = ran m n F m
11 10 supeq1d φ n Z sup ran F n * < = sup ran m n F m * <
12 nfcv _ m F
13 4 renepnfd φ lim sup F +∞
14 12 2 3 13 limsupubuz φ x m Z F m x
15 14 adantr φ n Z x m Z F m x
16 ssralv n Z m Z F m x m n F m x
17 7 16 syl n Z m Z F m x m n F m x
18 17 adantl φ n Z m Z F m x m n F m x
19 18 reximdv φ n Z x m Z F m x x m n F m x
20 15 19 mpd φ n Z x m n F m x
21 nfv m φ n Z
22 2 eluzelz2 n Z n
23 uzid n n n
24 ne0i n n n
25 22 23 24 3syl n Z n
26 25 adantl φ n Z n
27 5 adantr φ n Z m n F : Z
28 8 sselda φ n Z m n m Z
29 27 28 ffvelrnd φ n Z m n F m
30 21 26 29 supxrre3rnmpt φ n Z sup ran m n F m * < x m n F m x
31 20 30 mpbird φ n Z sup ran m n F m * <
32 11 31 eqeltrd φ n Z sup ran F n * <
33 32 fmpttd φ n Z sup ran F n * < : Z
34 eqid i = i
35 2 eluzelz2 i Z i
36 35 peano2zd i Z i + 1
37 35 zred i Z i
38 lep1 i i i + 1
39 37 38 syl i Z i i + 1
40 34 35 36 39 eluzd i Z i + 1 i
41 uzss i + 1 i i + 1 i
42 40 41 syl i Z i + 1 i
43 ssres2 i + 1 i F i + 1 F i
44 42 43 syl i Z F i + 1 F i
45 rnss F i + 1 F i ran F i + 1 ran F i
46 44 45 syl i Z ran F i + 1 ran F i
47 46 adantl φ i Z ran F i + 1 ran F i
48 rnresss ran F i ran F
49 48 a1i φ i Z ran F i ran F
50 3 frnd φ ran F
51 50 adantr φ i Z ran F
52 49 51 sstrd φ i Z ran F i
53 ressxr *
54 53 a1i φ i Z *
55 52 54 sstrd φ i Z ran F i *
56 supxrss ran F i + 1 ran F i ran F i * sup ran F i + 1 * < sup ran F i * <
57 47 55 56 syl2anc φ i Z sup ran F i + 1 * < sup ran F i * <
58 eqidd i Z n Z sup ran F n * < = n Z sup ran F n * <
59 fveq2 n = i + 1 n = i + 1
60 59 reseq2d n = i + 1 F n = F i + 1
61 60 rneqd n = i + 1 ran F n = ran F i + 1
62 61 supeq1d n = i + 1 sup ran F n * < = sup ran F i + 1 * <
63 62 adantl i Z n = i + 1 sup ran F n * < = sup ran F i + 1 * <
64 2 peano2uzs i Z i + 1 Z
65 xrltso < Or *
66 65 supex sup ran F i + 1 * < V
67 66 a1i i Z sup ran F i + 1 * < V
68 58 63 64 67 fvmptd i Z n Z sup ran F n * < i + 1 = sup ran F i + 1 * <
69 68 adantl φ i Z n Z sup ran F n * < i + 1 = sup ran F i + 1 * <
70 fveq2 n = i n = i
71 70 reseq2d n = i F n = F i
72 71 rneqd n = i ran F n = ran F i
73 72 supeq1d n = i sup ran F n * < = sup ran F i * <
74 73 adantl i Z n = i sup ran F n * < = sup ran F i * <
75 id i Z i Z
76 65 supex sup ran F i * < V
77 76 a1i i Z sup ran F i * < V
78 58 74 75 77 fvmptd i Z n Z sup ran F n * < i = sup ran F i * <
79 78 adantl φ i Z n Z sup ran F n * < i = sup ran F i * <
80 69 79 breq12d φ i Z n Z sup ran F n * < i + 1 n Z sup ran F n * < i sup ran F i + 1 * < sup ran F i * <
81 57 80 mpbird φ i Z n Z sup ran F n * < i + 1 n Z sup ran F n * < i
82 nfcv _ j F
83 3 frexr φ F : Z *
84 82 1 2 83 limsupre3uz φ lim sup F x i Z j i x F j x i Z j i F j x
85 4 84 mpbid φ x i Z j i x F j x i Z j i F j x
86 85 simpld φ x i Z j i x F j
87 simp-4r φ x i Z j i x F j x
88 87 rexrd φ x i Z j i x F j x *
89 83 3ad2ant1 φ i Z j i F : Z *
90 2 uztrn2 i Z j i j Z
91 90 3adant1 φ i Z j i j Z
92 89 91 ffvelrnd φ i Z j i F j *
93 92 ad5ant134 φ x i Z j i x F j F j *
94 55 supxrcld φ i Z sup ran F i * < *
95 94 ad5ant13 φ x i Z j i x F j sup ran F i * < *
96 simpr φ x i Z j i x F j x F j
97 55 3adant3 φ i Z j i ran F i *
98 fvres j i F i j = F j
99 98 eqcomd j i F j = F i j
100 99 3ad2ant3 φ i Z j i F j = F i j
101 3 ffnd φ F Fn Z
102 101 adantr φ i Z F Fn Z
103 2 75 uzssd2 i Z i Z
104 103 adantl φ i Z i Z
105 fnssres F Fn Z i Z F i Fn i
106 102 104 105 syl2anc φ i Z F i Fn i
107 106 3adant3 φ i Z j i F i Fn i
108 simp3 φ i Z j i j i
109 fnfvelrn F i Fn i j i F i j ran F i
110 107 108 109 syl2anc φ i Z j i F i j ran F i
111 100 110 eqeltrd φ i Z j i F j ran F i
112 eqid sup ran F i * < = sup ran F i * <
113 97 111 112 supxrubd φ i Z j i F j sup ran F i * <
114 113 ad5ant134 φ x i Z j i x F j F j sup ran F i * <
115 88 93 95 96 114 xrletrd φ x i Z j i x F j x sup ran F i * <
116 115 rexlimdva2 φ x i Z j i x F j x sup ran F i * <
117 116 ralimdva φ x i Z j i x F j i Z x sup ran F i * <
118 117 reximdva φ x i Z j i x F j x i Z x sup ran F i * <
119 86 118 mpd φ x i Z x sup ran F i * <
120 simpl y = x i Z y = x
121 78 adantl y = x i Z n Z sup ran F n * < i = sup ran F i * <
122 120 121 breq12d y = x i Z y n Z sup ran F n * < i x sup ran F i * <
123 122 ralbidva y = x i Z y n Z sup ran F n * < i i Z x sup ran F i * <
124 123 cbvrexvw y i Z y n Z sup ran F n * < i x i Z x sup ran F i * <
125 119 124 sylibr φ y i Z y n Z sup ran F n * < i
126 2 1 33 81 125 climinf φ n Z sup ran F n * < sup ran n Z sup ran F n * < <
127 fveq2 n = k n = k
128 127 reseq2d n = k F n = F k
129 128 rneqd n = k ran F n = ran F k
130 129 supeq1d n = k sup ran F n * < = sup ran F k * <
131 130 cbvmptv n Z sup ran F n * < = k Z sup ran F k * <
132 131 a1i φ n Z sup ran F n * < = k Z sup ran F k * <
133 1 2 3 4 limsupvaluz2 φ lim sup F = sup ran n Z sup ran F n * < <
134 133 eqcomd φ sup ran n Z sup ran F n * < < = lim sup F
135 132 134 breq12d φ n Z sup ran F n * < sup ran n Z sup ran F n * < < k Z sup ran F k * < lim sup F
136 126 135 mpbid φ k Z sup ran F k * < lim sup F