Step |
Hyp |
Ref |
Expression |
1 |
|
supcnvlimsup.m |
|
2 |
|
supcnvlimsup.z |
|
3 |
|
supcnvlimsup.f |
|
4 |
|
supcnvlimsup.r |
|
5 |
3
|
adantr |
|
6 |
|
id |
|
7 |
2 6
|
uzssd2 |
|
8 |
7
|
adantl |
|
9 |
5 8
|
feqresmpt |
|
10 |
9
|
rneqd |
|
11 |
10
|
supeq1d |
|
12 |
|
nfcv |
|
13 |
4
|
renepnfd |
|
14 |
12 2 3 13
|
limsupubuz |
|
15 |
14
|
adantr |
|
16 |
|
ssralv |
|
17 |
7 16
|
syl |
|
18 |
17
|
adantl |
|
19 |
18
|
reximdv |
|
20 |
15 19
|
mpd |
|
21 |
|
nfv |
|
22 |
2
|
eluzelz2 |
|
23 |
|
uzid |
|
24 |
|
ne0i |
|
25 |
22 23 24
|
3syl |
|
26 |
25
|
adantl |
|
27 |
5
|
adantr |
|
28 |
8
|
sselda |
|
29 |
27 28
|
ffvelrnd |
|
30 |
21 26 29
|
supxrre3rnmpt |
|
31 |
20 30
|
mpbird |
|
32 |
11 31
|
eqeltrd |
|
33 |
32
|
fmpttd |
|
34 |
|
eqid |
|
35 |
2
|
eluzelz2 |
|
36 |
35
|
peano2zd |
|
37 |
35
|
zred |
|
38 |
|
lep1 |
|
39 |
37 38
|
syl |
|
40 |
34 35 36 39
|
eluzd |
|
41 |
|
uzss |
|
42 |
40 41
|
syl |
|
43 |
|
ssres2 |
|
44 |
42 43
|
syl |
|
45 |
|
rnss |
|
46 |
44 45
|
syl |
|
47 |
46
|
adantl |
|
48 |
|
rnresss |
|
49 |
48
|
a1i |
|
50 |
3
|
frnd |
|
51 |
50
|
adantr |
|
52 |
49 51
|
sstrd |
|
53 |
|
ressxr |
|
54 |
53
|
a1i |
|
55 |
52 54
|
sstrd |
|
56 |
|
supxrss |
|
57 |
47 55 56
|
syl2anc |
|
58 |
|
eqidd |
|
59 |
|
fveq2 |
|
60 |
59
|
reseq2d |
|
61 |
60
|
rneqd |
|
62 |
61
|
supeq1d |
|
63 |
62
|
adantl |
|
64 |
2
|
peano2uzs |
|
65 |
|
xrltso |
|
66 |
65
|
supex |
|
67 |
66
|
a1i |
|
68 |
58 63 64 67
|
fvmptd |
|
69 |
68
|
adantl |
|
70 |
|
fveq2 |
|
71 |
70
|
reseq2d |
|
72 |
71
|
rneqd |
|
73 |
72
|
supeq1d |
|
74 |
73
|
adantl |
|
75 |
|
id |
|
76 |
65
|
supex |
|
77 |
76
|
a1i |
|
78 |
58 74 75 77
|
fvmptd |
|
79 |
78
|
adantl |
|
80 |
69 79
|
breq12d |
|
81 |
57 80
|
mpbird |
|
82 |
|
nfcv |
|
83 |
3
|
frexr |
|
84 |
82 1 2 83
|
limsupre3uz |
|
85 |
4 84
|
mpbid |
|
86 |
85
|
simpld |
|
87 |
|
simp-4r |
|
88 |
87
|
rexrd |
|
89 |
83
|
3ad2ant1 |
|
90 |
2
|
uztrn2 |
|
91 |
90
|
3adant1 |
|
92 |
89 91
|
ffvelrnd |
|
93 |
92
|
ad5ant134 |
|
94 |
55
|
supxrcld |
|
95 |
94
|
ad5ant13 |
|
96 |
|
simpr |
|
97 |
55
|
3adant3 |
|
98 |
|
fvres |
|
99 |
98
|
eqcomd |
|
100 |
99
|
3ad2ant3 |
|
101 |
3
|
ffnd |
|
102 |
101
|
adantr |
|
103 |
2 75
|
uzssd2 |
|
104 |
103
|
adantl |
|
105 |
|
fnssres |
|
106 |
102 104 105
|
syl2anc |
|
107 |
106
|
3adant3 |
|
108 |
|
simp3 |
|
109 |
|
fnfvelrn |
|
110 |
107 108 109
|
syl2anc |
|
111 |
100 110
|
eqeltrd |
|
112 |
|
eqid |
|
113 |
97 111 112
|
supxrubd |
|
114 |
113
|
ad5ant134 |
|
115 |
88 93 95 96 114
|
xrletrd |
|
116 |
115
|
rexlimdva2 |
|
117 |
116
|
ralimdva |
|
118 |
117
|
reximdva |
|
119 |
86 118
|
mpd |
|
120 |
|
simpl |
|
121 |
78
|
adantl |
|
122 |
120 121
|
breq12d |
|
123 |
122
|
ralbidva |
|
124 |
123
|
cbvrexvw |
|
125 |
119 124
|
sylibr |
|
126 |
2 1 33 81 125
|
climinf |
|
127 |
|
fveq2 |
|
128 |
127
|
reseq2d |
|
129 |
128
|
rneqd |
|
130 |
129
|
supeq1d |
|
131 |
130
|
cbvmptv |
|
132 |
131
|
a1i |
|
133 |
1 2 3 4
|
limsupvaluz2 |
|
134 |
133
|
eqcomd |
|
135 |
132 134
|
breq12d |
|
136 |
126 135
|
mpbid |
|