Metamath Proof Explorer


Theorem tgoldbachgtde

Description: Lemma for tgoldbachgtd . (Contributed by Thierry Arnoux, 15-Dec-2021)

Ref Expression
Hypotheses tgoldbachgtda.o O=z|¬2z
tgoldbachgtda.n φNO
tgoldbachgtda.0 φ1027N
tgoldbachgtda.h φH:0+∞
tgoldbachgtda.k φK:0+∞
tgoldbachgtda.1 φmKm1 .079955
tgoldbachgtda.2 φmHm1 .414
tgoldbachgtda.3 φ0 .00042248N201Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
Assertion tgoldbachgtde φ0<nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2

Proof

Step Hyp Ref Expression
1 tgoldbachgtda.o O=z|¬2z
2 tgoldbachgtda.n φNO
3 tgoldbachgtda.0 φ1027N
4 tgoldbachgtda.h φH:0+∞
5 tgoldbachgtda.k φK:0+∞
6 tgoldbachgtda.1 φmKm1 .079955
7 tgoldbachgtda.2 φmHm1 .414
8 tgoldbachgtda.3 φ0 .00042248N201Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
9 1 2 3 tgoldbachgnn φN
10 9 nnnn0d φN0
11 3nn0 30
12 11 a1i φ30
13 ssidd φ
14 10 12 13 reprfi2 φrepr3NFin
15 diffi repr3NFinrepr3NOrepr3NFin
16 14 15 syl φrepr3NOrepr3NFin
17 difssd φrepr3NOrepr3Nrepr3N
18 17 sselda φnrepr3NOrepr3Nnrepr3N
19 vmaf Λ:
20 19 a1i φnrepr3NΛ:
21 ssidd φnrepr3N
22 10 nn0zd φN
23 22 adantr φnrepr3NN
24 11 a1i φnrepr3N30
25 simpr φnrepr3Nnrepr3N
26 21 23 24 25 reprf φnrepr3Nn:0..^3
27 c0ex 0V
28 27 tpid1 0012
29 fzo0to3tp 0..^3=012
30 28 29 eleqtrri 00..^3
31 30 a1i φnrepr3N00..^3
32 26 31 ffvelcdmd φnrepr3Nn0
33 20 32 ffvelcdmd φnrepr3NΛn0
34 rge0ssre 0+∞
35 fss H:0+∞0+∞H:
36 4 34 35 sylancl φH:
37 36 adantr φnrepr3NH:
38 37 32 ffvelcdmd φnrepr3NHn0
39 33 38 remulcld φnrepr3NΛn0Hn0
40 1ex 1V
41 40 tpid2 1012
42 41 29 eleqtrri 10..^3
43 42 a1i φnrepr3N10..^3
44 26 43 ffvelcdmd φnrepr3Nn1
45 20 44 ffvelcdmd φnrepr3NΛn1
46 fss K:0+∞0+∞K:
47 5 34 46 sylancl φK:
48 47 adantr φnrepr3NK:
49 48 44 ffvelcdmd φnrepr3NKn1
50 45 49 remulcld φnrepr3NΛn1Kn1
51 2ex 2V
52 51 tpid3 2012
53 52 29 eleqtrri 20..^3
54 53 a1i φnrepr3N20..^3
55 26 54 ffvelcdmd φnrepr3Nn2
56 20 55 ffvelcdmd φnrepr3NΛn2
57 48 55 ffvelcdmd φnrepr3NKn2
58 56 57 remulcld φnrepr3NΛn2Kn2
59 50 58 remulcld φnrepr3NΛn1Kn1Λn2Kn2
60 39 59 remulcld φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
61 18 60 syldan φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
62 16 61 fsumrecl φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
63 0nn0 00
64 qssre
65 4nn0 40
66 2nn0 20
67 nn0ssq 0
68 8nn0 80
69 67 68 sselii 8
70 65 69 dp2clq 48
71 66 70 dp2clq 248
72 66 71 dp2clq 2248
73 65 72 dp2clq 42248
74 63 73 dp2clq 042248
75 63 74 dp2clq 0042248
76 63 75 dp2clq 00042248
77 64 76 sselii 00042248
78 dpcl 00000422480 .00042248
79 63 77 78 mp2an 0 .00042248
80 79 a1i φ0 .00042248
81 9 nnred φN
82 81 resqcld φN2
83 80 82 remulcld φ0 .00042248N2
84 14 60 fsumrecl φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
85 7nn0 70
86 11 70 dp2clq 348
87 64 86 sselii 348
88 dpcl 703487 .348
89 85 87 88 mp2an 7 .348
90 89 a1i φ7 .348
91 9 nnrpd φN+
92 91 relogcld φlogN
93 10 nn0ge0d φ0N
94 81 93 resqrtcld φN
95 91 sqrtgt0d φ0<N
96 95 gt0ne0d φN0
97 92 94 96 redivcld φlogNN
98 90 97 remulcld φ7 .348logNN
99 98 82 remulcld φ7 .348logNNN2
100 1 9 3 4 5 6 7 hgt750leme φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn27 .348logNNN2
101 2z 2
102 101 a1i φ2
103 91 102 rpexpcld φN2+
104 hgt750lem N01027N7 .348logNN<0 .00042248
105 10 3 104 syl2anc φ7 .348logNN<0 .00042248
106 98 80 103 105 ltmul1dd φ7 .348logNNN2<0 .00042248N2
107 62 99 83 100 106 lelttrd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2<0 .00042248N2
108 36 47 10 circlemethhgt φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=01Λ×fHvtsNxΛ×fKvtsNx2ei2π- Nxdx
109 8 108 breqtrrd φ0 .00042248N2nrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
110 62 83 84 107 109 ltletrd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2<nrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
111 62 84 posdifd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2<nrepr3NΛn0Hn0Λn1Kn1Λn2Kn20<nrepr3NΛn0Hn0Λn1Kn1Λn2Kn2nrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
112 110 111 mpbid φ0<nrepr3NΛn0Hn0Λn1Kn1Λn2Kn2nrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
113 inss2 O
114 prmssnn
115 113 114 sstri O
116 115 a1i φO
117 13 22 12 116 reprss φOrepr3Nrepr3N
118 14 117 ssfid φOrepr3NFin
119 117 sselda φnOrepr3Nnrepr3N
120 60 recnd φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
121 119 120 syldan φnOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
122 118 121 fsumcl φnOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
123 62 recnd φnrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
124 disjdif Orepr3Nrepr3NOrepr3N=
125 124 a1i φOrepr3Nrepr3NOrepr3N=
126 undif Orepr3Nrepr3NOrepr3Nrepr3NOrepr3N=repr3N
127 117 126 sylib φOrepr3Nrepr3NOrepr3N=repr3N
128 127 eqcomd φrepr3N=Orepr3Nrepr3NOrepr3N
129 125 128 14 120 fsumsplit φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2+nrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
130 122 123 129 mvrraddd φnrepr3NΛn0Hn0Λn1Kn1Λn2Kn2nrepr3NOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2=nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2
131 112 130 breqtrd φ0<nOrepr3NΛn0Hn0Λn1Kn1Λn2Kn2