Metamath Proof Explorer


Theorem tgptsmscls

Description: A sum in a topological group is uniquely determined up to a coset of cls ( { 0 } ) , which is a normal subgroup by clsnsg , 0nsg . (Contributed by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tgptsmscls.b B=BaseG
tgptsmscls.j J=TopOpenG
tgptsmscls.1 φGCMnd
tgptsmscls.2 φGTopGrp
tgptsmscls.a φAV
tgptsmscls.f φF:AB
tgptsmscls.x φXGtsumsF
Assertion tgptsmscls φGtsumsF=clsJX

Proof

Step Hyp Ref Expression
1 tgptsmscls.b B=BaseG
2 tgptsmscls.j J=TopOpenG
3 tgptsmscls.1 φGCMnd
4 tgptsmscls.2 φGTopGrp
5 tgptsmscls.a φAV
6 tgptsmscls.f φF:AB
7 tgptsmscls.x φXGtsumsF
8 4 adantr φxGtsumsFGTopGrp
9 tgpgrp GTopGrpGGrp
10 8 9 syl φxGtsumsFGGrp
11 eqid 0G=0G
12 11 0subg GGrp0GSubGrpG
13 10 12 syl φxGtsumsF0GSubGrpG
14 2 clssubg GTopGrp0GSubGrpGclsJ0GSubGrpG
15 8 13 14 syl2anc φxGtsumsFclsJ0GSubGrpG
16 eqid G~QGclsJ0G=G~QGclsJ0G
17 1 16 eqger clsJ0GSubGrpGG~QGclsJ0GErB
18 15 17 syl φxGtsumsFG~QGclsJ0GErB
19 tgptps GTopGrpGTopSp
20 4 19 syl φGTopSp
21 1 3 20 5 6 tsmscl φGtsumsFB
22 21 sselda φxGtsumsFxB
23 21 7 sseldd φXB
24 23 adantr φxGtsumsFXB
25 eqid -G=-G
26 3 adantr φxGtsumsFGCMnd
27 5 adantr φxGtsumsFAV
28 6 adantr φxGtsumsFF:AB
29 7 adantr φxGtsumsFXGtsumsF
30 simpr φxGtsumsFxGtsumsF
31 1 25 26 8 27 28 28 29 30 tsmssub φxGtsumsFX-GxGtsumsF-GfF
32 28 ffvelcdmda φxGtsumsFkAFkB
33 28 feqmptd φxGtsumsFF=kAFk
34 27 32 32 33 33 offval2 φxGtsumsFF-GfF=kAFk-GFk
35 10 adantr φxGtsumsFkAGGrp
36 1 11 25 grpsubid GGrpFkBFk-GFk=0G
37 35 32 36 syl2anc φxGtsumsFkAFk-GFk=0G
38 37 mpteq2dva φxGtsumsFkAFk-GFk=kA0G
39 34 38 eqtrd φxGtsumsFF-GfF=kA0G
40 39 oveq2d φxGtsumsFGtsumsF-GfF=GtsumskA0G
41 8 19 syl φxGtsumsFGTopSp
42 1 11 grpidcl GGrp0GB
43 10 42 syl φxGtsumsF0GB
44 43 adantr φxGtsumsFkA0GB
45 44 fmpttd φxGtsumsFkA0G:AB
46 fconstmpt A×0G=kA0G
47 fvexd φ0GV
48 5 47 fczfsuppd φfinSupp0GA×0G
49 48 adantr φxGtsumsFfinSupp0GA×0G
50 46 49 eqbrtrrid φxGtsumsFfinSupp0GkA0G
51 1 11 26 41 27 45 50 2 tsmsgsum φxGtsumsFGtsumskA0G=clsJGkA0G
52 cmnmnd GCMndGMnd
53 26 52 syl φxGtsumsFGMnd
54 11 gsumz GMndAVGkA0G=0G
55 53 27 54 syl2anc φxGtsumsFGkA0G=0G
56 55 sneqd φxGtsumsFGkA0G=0G
57 56 fveq2d φxGtsumsFclsJGkA0G=clsJ0G
58 40 51 57 3eqtrd φxGtsumsFGtsumsF-GfF=clsJ0G
59 31 58 eleqtrd φxGtsumsFX-GxclsJ0G
60 isabl GAbelGGrpGCMnd
61 10 26 60 sylanbrc φxGtsumsFGAbel
62 1 subgss clsJ0GSubGrpGclsJ0GB
63 15 62 syl φxGtsumsFclsJ0GB
64 1 25 16 eqgabl GAbelclsJ0GBxG~QGclsJ0GXxBXBX-GxclsJ0G
65 61 63 64 syl2anc φxGtsumsFxG~QGclsJ0GXxBXBX-GxclsJ0G
66 22 24 59 65 mpbir3and φxGtsumsFxG~QGclsJ0GX
67 18 66 ersym φxGtsumsFXG~QGclsJ0Gx
68 16 releqg RelG~QGclsJ0G
69 relelec RelG~QGclsJ0GxXG~QGclsJ0GXG~QGclsJ0Gx
70 68 69 ax-mp xXG~QGclsJ0GXG~QGclsJ0Gx
71 67 70 sylibr φxGtsumsFxXG~QGclsJ0G
72 eqid clsJ0G=clsJ0G
73 1 2 11 16 72 snclseqg GTopGrpXBXG~QGclsJ0G=clsJX
74 8 24 73 syl2anc φxGtsumsFXG~QGclsJ0G=clsJX
75 71 74 eleqtrd φxGtsumsFxclsJX
76 75 ex φxGtsumsFxclsJX
77 76 ssrdv φGtsumsFclsJX
78 1 2 3 20 5 6 7 tsmscls φclsJXGtsumsF
79 77 78 eqssd φGtsumsF=clsJX