Metamath Proof Explorer


Theorem tgptsmscls

Description: A sum in a topological group is uniquely determined up to a coset of cls ( { 0 } ) , which is a normal subgroup by clsnsg , 0nsg . (Contributed by Mario Carneiro, 22-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tgptsmscls.b B = Base G
tgptsmscls.j J = TopOpen G
tgptsmscls.1 φ G CMnd
tgptsmscls.2 φ G TopGrp
tgptsmscls.a φ A V
tgptsmscls.f φ F : A B
tgptsmscls.x φ X G tsums F
Assertion tgptsmscls φ G tsums F = cls J X

Proof

Step Hyp Ref Expression
1 tgptsmscls.b B = Base G
2 tgptsmscls.j J = TopOpen G
3 tgptsmscls.1 φ G CMnd
4 tgptsmscls.2 φ G TopGrp
5 tgptsmscls.a φ A V
6 tgptsmscls.f φ F : A B
7 tgptsmscls.x φ X G tsums F
8 4 adantr φ x G tsums F G TopGrp
9 tgpgrp G TopGrp G Grp
10 8 9 syl φ x G tsums F G Grp
11 eqid 0 G = 0 G
12 11 0subg G Grp 0 G SubGrp G
13 10 12 syl φ x G tsums F 0 G SubGrp G
14 2 clssubg G TopGrp 0 G SubGrp G cls J 0 G SubGrp G
15 8 13 14 syl2anc φ x G tsums F cls J 0 G SubGrp G
16 eqid G ~ QG cls J 0 G = G ~ QG cls J 0 G
17 1 16 eqger cls J 0 G SubGrp G G ~ QG cls J 0 G Er B
18 15 17 syl φ x G tsums F G ~ QG cls J 0 G Er B
19 tgptps G TopGrp G TopSp
20 4 19 syl φ G TopSp
21 1 3 20 5 6 tsmscl φ G tsums F B
22 21 sselda φ x G tsums F x B
23 21 7 sseldd φ X B
24 23 adantr φ x G tsums F X B
25 eqid - G = - G
26 3 adantr φ x G tsums F G CMnd
27 5 adantr φ x G tsums F A V
28 6 adantr φ x G tsums F F : A B
29 7 adantr φ x G tsums F X G tsums F
30 simpr φ x G tsums F x G tsums F
31 1 25 26 8 27 28 28 29 30 tsmssub φ x G tsums F X - G x G tsums F - G f F
32 28 ffvelrnda φ x G tsums F k A F k B
33 28 feqmptd φ x G tsums F F = k A F k
34 27 32 32 33 33 offval2 φ x G tsums F F - G f F = k A F k - G F k
35 10 adantr φ x G tsums F k A G Grp
36 1 11 25 grpsubid G Grp F k B F k - G F k = 0 G
37 35 32 36 syl2anc φ x G tsums F k A F k - G F k = 0 G
38 37 mpteq2dva φ x G tsums F k A F k - G F k = k A 0 G
39 34 38 eqtrd φ x G tsums F F - G f F = k A 0 G
40 39 oveq2d φ x G tsums F G tsums F - G f F = G tsums k A 0 G
41 8 19 syl φ x G tsums F G TopSp
42 1 11 grpidcl G Grp 0 G B
43 10 42 syl φ x G tsums F 0 G B
44 43 adantr φ x G tsums F k A 0 G B
45 44 fmpttd φ x G tsums F k A 0 G : A B
46 fconstmpt A × 0 G = k A 0 G
47 fvexd φ 0 G V
48 5 47 fczfsuppd φ finSupp 0 G A × 0 G
49 48 adantr φ x G tsums F finSupp 0 G A × 0 G
50 46 49 eqbrtrrid φ x G tsums F finSupp 0 G k A 0 G
51 1 11 26 41 27 45 50 2 tsmsgsum φ x G tsums F G tsums k A 0 G = cls J G k A 0 G
52 cmnmnd G CMnd G Mnd
53 26 52 syl φ x G tsums F G Mnd
54 11 gsumz G Mnd A V G k A 0 G = 0 G
55 53 27 54 syl2anc φ x G tsums F G k A 0 G = 0 G
56 55 sneqd φ x G tsums F G k A 0 G = 0 G
57 56 fveq2d φ x G tsums F cls J G k A 0 G = cls J 0 G
58 40 51 57 3eqtrd φ x G tsums F G tsums F - G f F = cls J 0 G
59 31 58 eleqtrd φ x G tsums F X - G x cls J 0 G
60 isabl G Abel G Grp G CMnd
61 10 26 60 sylanbrc φ x G tsums F G Abel
62 1 subgss cls J 0 G SubGrp G cls J 0 G B
63 15 62 syl φ x G tsums F cls J 0 G B
64 1 25 16 eqgabl G Abel cls J 0 G B x G ~ QG cls J 0 G X x B X B X - G x cls J 0 G
65 61 63 64 syl2anc φ x G tsums F x G ~ QG cls J 0 G X x B X B X - G x cls J 0 G
66 22 24 59 65 mpbir3and φ x G tsums F x G ~ QG cls J 0 G X
67 18 66 ersym φ x G tsums F X G ~ QG cls J 0 G x
68 16 releqg Rel G ~ QG cls J 0 G
69 relelec Rel G ~ QG cls J 0 G x X G ~ QG cls J 0 G X G ~ QG cls J 0 G x
70 68 69 ax-mp x X G ~ QG cls J 0 G X G ~ QG cls J 0 G x
71 67 70 sylibr φ x G tsums F x X G ~ QG cls J 0 G
72 eqid cls J 0 G = cls J 0 G
73 1 2 11 16 72 snclseqg G TopGrp X B X G ~ QG cls J 0 G = cls J X
74 8 24 73 syl2anc φ x G tsums F X G ~ QG cls J 0 G = cls J X
75 71 74 eleqtrd φ x G tsums F x cls J X
76 75 ex φ x G tsums F x cls J X
77 76 ssrdv φ G tsums F cls J X
78 1 2 3 20 5 6 7 tsmscls φ cls J X G tsums F
79 77 78 eqssd φ G tsums F = cls J X