Metamath Proof Explorer


Theorem trust

Description: The trace of a uniform structure U on a subset A is a uniform structure on A . Definition 3 of BourbakiTop1 p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017)

Ref Expression
Assertion trust U UnifOn X A X U 𝑡 A × A UnifOn A

Proof

Step Hyp Ref Expression
1 restsspw U 𝑡 A × A 𝒫 A × A
2 1 a1i U UnifOn X A X U 𝑡 A × A 𝒫 A × A
3 inxp X × X A × A = X A × X A
4 sseqin2 A X X A = A
5 4 biimpi A X X A = A
6 5 sqxpeqd A X X A × X A = A × A
7 3 6 eqtrid A X X × X A × A = A × A
8 7 adantl U UnifOn X A X X × X A × A = A × A
9 simpl U UnifOn X A X U UnifOn X
10 elfvex U UnifOn X X V
11 10 adantr U UnifOn X A X X V
12 simpr U UnifOn X A X A X
13 11 12 ssexd U UnifOn X A X A V
14 13 13 xpexd U UnifOn X A X A × A V
15 ustbasel U UnifOn X X × X U
16 15 adantr U UnifOn X A X X × X U
17 elrestr U UnifOn X A × A V X × X U X × X A × A U 𝑡 A × A
18 9 14 16 17 syl3anc U UnifOn X A X X × X A × A U 𝑡 A × A
19 8 18 eqeltrrd U UnifOn X A X A × A U 𝑡 A × A
20 9 ad5antr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A U UnifOn X
21 14 ad5antr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A A × A V
22 simplr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A u U
23 simp-4r U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w 𝒫 A × A
24 23 elpwid U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w A × A
25 12 ad5antr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A A X
26 xpss12 A X A X A × A X × X
27 25 25 26 syl2anc U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A A × A X × X
28 24 27 sstrd U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w X × X
29 ustssxp U UnifOn X u U u X × X
30 20 22 29 syl2anc U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A u X × X
31 28 30 unssd U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w u X × X
32 ssun2 u w u
33 ustssel U UnifOn X u U w u X × X u w u w u U
34 32 33 mpi U UnifOn X u U w u X × X w u U
35 20 22 31 34 syl3anc U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w u U
36 df-ss w A × A w A × A = w
37 24 36 sylib U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w A × A = w
38 37 uneq1d U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w A × A u A × A = w u A × A
39 simpr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A v = u A × A
40 simpllr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A v w
41 39 40 eqsstrrd U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A u A × A w
42 ssequn2 u A × A w w u A × A = w
43 41 42 sylib U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w u A × A = w
44 38 43 eqtr2d U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w = w A × A u A × A
45 indir w u A × A = w A × A u A × A
46 44 45 eqtr4di U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w = w u A × A
47 ineq1 x = w u x A × A = w u A × A
48 47 rspceeqv w u U w = w u A × A x U w = x A × A
49 35 46 48 syl2anc U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A x U w = x A × A
50 elrest U UnifOn X A × A V w U 𝑡 A × A x U w = x A × A
51 50 biimpar U UnifOn X A × A V x U w = x A × A w U 𝑡 A × A
52 20 21 49 51 syl21anc U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A w U 𝑡 A × A
53 elrest U UnifOn X A × A V v U 𝑡 A × A u U v = u A × A
54 53 biimpa U UnifOn X A × A V v U 𝑡 A × A u U v = u A × A
55 14 54 syldanl U UnifOn X A X v U 𝑡 A × A u U v = u A × A
56 55 ad2antrr U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w u U v = u A × A
57 52 56 r19.29a U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A
58 57 ex U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A
59 58 ralrimiva U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A
60 9 ad5antr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A U UnifOn X
61 14 ad5antr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A A × A V
62 simpllr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A u U
63 simplr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A x U
64 ustincl U UnifOn X u U x U u x U
65 60 62 63 64 syl3anc U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A u x U
66 simprl U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A v = u A × A
67 simprr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A w = x A × A
68 66 67 ineq12d U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A v w = u A × A x A × A
69 inindir u x A × A = u A × A x A × A
70 68 69 eqtr4di U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A v w = u x A × A
71 ineq1 y = u x y A × A = u x A × A
72 71 rspceeqv u x U v w = u x A × A y U v w = y A × A
73 65 70 72 syl2anc U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A y U v w = y A × A
74 elrest U UnifOn X A × A V v w U 𝑡 A × A y U v w = y A × A
75 74 biimpar U UnifOn X A × A V y U v w = y A × A v w U 𝑡 A × A
76 60 61 73 75 syl21anc U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A v w U 𝑡 A × A
77 55 adantr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U v = u A × A
78 9 ad2antrr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A U UnifOn X
79 14 ad2antrr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A A × A V
80 simpr U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A w U 𝑡 A × A
81 50 biimpa U UnifOn X A × A V w U 𝑡 A × A x U w = x A × A
82 78 79 80 81 syl21anc U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A x U w = x A × A
83 reeanv u U x U v = u A × A w = x A × A u U v = u A × A x U w = x A × A
84 77 82 83 sylanbrc U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A u U x U v = u A × A w = x A × A
85 76 84 r19.29vva U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A
86 85 ralrimiva U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A
87 simp-4l U UnifOn X A X v U 𝑡 A × A u U v = u A × A U UnifOn X
88 simplr U UnifOn X A X v U 𝑡 A × A u U v = u A × A u U
89 ustdiag U UnifOn X u U I X u
90 87 88 89 syl2anc U UnifOn X A X v U 𝑡 A × A u U v = u A × A I X u
91 simp-4r U UnifOn X A X v U 𝑡 A × A u U v = u A × A A X
92 inss1 I X A × A I X
93 resss I X I
94 92 93 sstri I X A × A I
95 iss I X A × A I I X A × A = I dom I X A × A
96 94 95 mpbi I X A × A = I dom I X A × A
97 simpr A X u A u A
98 ssel2 A X u A u X
99 equid u = u
100 resieq u X u X u I X u u = u
101 99 100 mpbiri u X u X u I X u
102 98 98 101 syl2anc A X u A u I X u
103 breq2 v = u u I X v u I X u
104 103 rspcev u A u I X u v A u I X v
105 97 102 104 syl2anc A X u A v A u I X v
106 105 ralrimiva A X u A v A u I X v
107 dminxp dom I X A × A = A u A v A u I X v
108 106 107 sylibr A X dom I X A × A = A
109 108 reseq2d A X I dom I X A × A = I A
110 96 109 eqtr2id A X I A = I X A × A
111 110 adantl I X u A X I A = I X A × A
112 ssrin I X u I X A × A u A × A
113 112 adantr I X u A X I X A × A u A × A
114 111 113 eqsstrd I X u A X I A u A × A
115 90 91 114 syl2anc U UnifOn X A X v U 𝑡 A × A u U v = u A × A I A u A × A
116 simpr U UnifOn X A X v U 𝑡 A × A u U v = u A × A v = u A × A
117 115 116 sseqtrrd U UnifOn X A X v U 𝑡 A × A u U v = u A × A I A v
118 117 55 r19.29a U UnifOn X A X v U 𝑡 A × A I A v
119 14 ad3antrrr U UnifOn X A X v U 𝑡 A × A u U v = u A × A A × A V
120 ustinvel U UnifOn X u U u -1 U
121 87 88 120 syl2anc U UnifOn X A X v U 𝑡 A × A u U v = u A × A u -1 U
122 116 cnveqd U UnifOn X A X v U 𝑡 A × A u U v = u A × A v -1 = u A × A -1
123 cnvin u A × A -1 = u -1 A × A -1
124 cnvxp A × A -1 = A × A
125 124 ineq2i u -1 A × A -1 = u -1 A × A
126 123 125 eqtri u A × A -1 = u -1 A × A
127 122 126 eqtrdi U UnifOn X A X v U 𝑡 A × A u U v = u A × A v -1 = u -1 A × A
128 ineq1 x = u -1 x A × A = u -1 A × A
129 128 rspceeqv u -1 U v -1 = u -1 A × A x U v -1 = x A × A
130 121 127 129 syl2anc U UnifOn X A X v U 𝑡 A × A u U v = u A × A x U v -1 = x A × A
131 elrest U UnifOn X A × A V v -1 U 𝑡 A × A x U v -1 = x A × A
132 131 biimpar U UnifOn X A × A V x U v -1 = x A × A v -1 U 𝑡 A × A
133 87 119 130 132 syl21anc U UnifOn X A X v U 𝑡 A × A u U v = u A × A v -1 U 𝑡 A × A
134 133 55 r19.29a U UnifOn X A X v U 𝑡 A × A v -1 U 𝑡 A × A
135 simp-4l U UnifOn X A X u U x U x x u U UnifOn X
136 14 ad3antrrr U UnifOn X A X u U x U x x u A × A V
137 simplr U UnifOn X A X u U x U x x u x U
138 elrestr U UnifOn X A × A V x U x A × A U 𝑡 A × A
139 135 136 137 138 syl3anc U UnifOn X A X u U x U x x u x A × A U 𝑡 A × A
140 inss1 x A × A x
141 coss1 x A × A x x A × A x A × A x x A × A
142 coss2 x A × A x x x A × A x x
143 141 142 sstrd x A × A x x A × A x A × A x x
144 140 143 ax-mp x A × A x A × A x x
145 sstr x A × A x A × A x x x x u x A × A x A × A u
146 144 145 mpan x x u x A × A x A × A u
147 146 adantl U UnifOn X A X u U x U x x u x A × A x A × A u
148 inss2 x A × A A × A
149 coss1 x A × A A × A x A × A x A × A A × A x A × A
150 coss2 x A × A A × A A × A x A × A A × A A × A
151 149 150 sstrd x A × A A × A x A × A x A × A A × A A × A
152 148 151 ax-mp x A × A x A × A A × A A × A
153 xpidtr A × A A × A A × A
154 152 153 sstri x A × A x A × A A × A
155 154 a1i U UnifOn X A X u U x U x x u x A × A x A × A A × A
156 147 155 ssind U UnifOn X A X u U x U x x u x A × A x A × A u A × A
157 id w = x A × A w = x A × A
158 157 157 coeq12d w = x A × A w w = x A × A x A × A
159 158 sseq1d w = x A × A w w u A × A x A × A x A × A u A × A
160 159 rspcev x A × A U 𝑡 A × A x A × A x A × A u A × A w U 𝑡 A × A w w u A × A
161 139 156 160 syl2anc U UnifOn X A X u U x U x x u w U 𝑡 A × A w w u A × A
162 ustexhalf U UnifOn X u U x U x x u
163 162 adantlr U UnifOn X A X u U x U x x u
164 161 163 r19.29a U UnifOn X A X u U w U 𝑡 A × A w w u A × A
165 164 ad4ant13 U UnifOn X A X v U 𝑡 A × A u U v = u A × A w U 𝑡 A × A w w u A × A
166 116 sseq2d U UnifOn X A X v U 𝑡 A × A u U v = u A × A w w v w w u A × A
167 166 rexbidv U UnifOn X A X v U 𝑡 A × A u U v = u A × A w U 𝑡 A × A w w v w U 𝑡 A × A w w u A × A
168 165 167 mpbird U UnifOn X A X v U 𝑡 A × A u U v = u A × A w U 𝑡 A × A w w v
169 168 55 r19.29a U UnifOn X A X v U 𝑡 A × A w U 𝑡 A × A w w v
170 118 134 169 3jca U UnifOn X A X v U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
171 59 86 170 3jca U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
172 171 ralrimiva U UnifOn X A X v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
173 2 19 172 3jca U UnifOn X A X U 𝑡 A × A 𝒫 A × A A × A U 𝑡 A × A v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
174 isust A V U 𝑡 A × A UnifOn A U 𝑡 A × A 𝒫 A × A A × A U 𝑡 A × A v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
175 13 174 syl U UnifOn X A X U 𝑡 A × A UnifOn A U 𝑡 A × A 𝒫 A × A A × A U 𝑡 A × A v U 𝑡 A × A w 𝒫 A × A v w w U 𝑡 A × A w U 𝑡 A × A v w U 𝑡 A × A I A v v -1 U 𝑡 A × A w U 𝑡 A × A w w v
176 173 175 mpbird U UnifOn X A X U 𝑡 A × A UnifOn A