Step |
Hyp |
Ref |
Expression |
1 |
|
uncfcurf.g |
|
2 |
|
uncfcurf.c |
|
3 |
|
uncfcurf.d |
|
4 |
|
uncfcurf.f |
|
5 |
|
eqid |
|
6 |
3
|
adantr |
|
7 |
|
funcrcl |
|
8 |
4 7
|
syl |
|
9 |
8
|
simprd |
|
10 |
9
|
adantr |
|
11 |
|
eqid |
|
12 |
1 11 2 3 4
|
curfcl |
|
13 |
12
|
adantr |
|
14 |
|
eqid |
|
15 |
|
eqid |
|
16 |
|
simprl |
|
17 |
|
simprr |
|
18 |
5 6 10 13 14 15 16 17
|
uncf1 |
|
19 |
2
|
adantr |
|
20 |
4
|
adantr |
|
21 |
|
eqid |
|
22 |
1 14 19 6 20 15 16 21 17
|
curf11 |
|
23 |
18 22
|
eqtrd |
|
24 |
23
|
ralrimivva |
|
25 |
|
eqid |
|
26 |
25 14 15
|
xpcbas |
|
27 |
|
eqid |
|
28 |
|
relfunc |
|
29 |
5 3 9 12
|
uncfcl |
|
30 |
|
1st2ndbr |
|
31 |
28 29 30
|
sylancr |
|
32 |
26 27 31
|
funcf1 |
|
33 |
32
|
ffnd |
|
34 |
|
1st2ndbr |
|
35 |
28 4 34
|
sylancr |
|
36 |
26 27 35
|
funcf1 |
|
37 |
36
|
ffnd |
|
38 |
|
eqfnov2 |
|
39 |
33 37 38
|
syl2anc |
|
40 |
24 39
|
mpbird |
|
41 |
3
|
ad3antrrr |
|
42 |
9
|
ad3antrrr |
|
43 |
12
|
ad3antrrr |
|
44 |
16
|
adantr |
|
45 |
44
|
adantr |
|
46 |
17
|
adantr |
|
47 |
46
|
adantr |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
simprl |
|
51 |
50
|
adantr |
|
52 |
|
simprr |
|
53 |
52
|
adantr |
|
54 |
|
simprl |
|
55 |
|
simprr |
|
56 |
5 41 42 43 14 15 45 47 48 49 51 53 54 55
|
uncf2 |
|
57 |
2
|
ad3antrrr |
|
58 |
4
|
ad3antrrr |
|
59 |
1 14 57 41 58 15 45 21 47
|
curf11 |
|
60 |
|
df-ov |
|
61 |
59 60
|
eqtrdi |
|
62 |
1 14 57 41 58 15 45 21 53
|
curf11 |
|
63 |
|
df-ov |
|
64 |
62 63
|
eqtrdi |
|
65 |
61 64
|
opeq12d |
|
66 |
|
eqid |
|
67 |
1 14 57 41 58 15 51 66 53
|
curf11 |
|
68 |
|
df-ov |
|
69 |
67 68
|
eqtrdi |
|
70 |
65 69
|
oveq12d |
|
71 |
|
eqid |
|
72 |
|
eqid |
|
73 |
1 14 57 41 58 15 48 71 45 51 54 72 53
|
curf2val |
|
74 |
|
df-ov |
|
75 |
73 74
|
eqtrdi |
|
76 |
|
eqid |
|
77 |
1 14 57 41 58 15 45 21 47 49 76 53 55
|
curf12 |
|
78 |
|
df-ov |
|
79 |
77 78
|
eqtrdi |
|
80 |
70 75 79
|
oveq123d |
|
81 |
|
eqid |
|
82 |
|
eqid |
|
83 |
|
eqid |
|
84 |
35
|
ad2antrr |
|
85 |
84
|
adantr |
|
86 |
|
opelxpi |
|
87 |
86
|
ad2antlr |
|
88 |
87
|
adantr |
|
89 |
45 53
|
opelxpd |
|
90 |
|
opelxpi |
|
91 |
90
|
adantl |
|
92 |
91
|
adantr |
|
93 |
14 48 76 57 45
|
catidcl |
|
94 |
93 55
|
opelxpd |
|
95 |
25 14 15 48 49 45 47 45 53 81
|
xpchom2 |
|
96 |
94 95
|
eleqtrrd |
|
97 |
15 49 71 41 53
|
catidcl |
|
98 |
54 97
|
opelxpd |
|
99 |
25 14 15 48 49 45 53 51 53 81
|
xpchom2 |
|
100 |
98 99
|
eleqtrrd |
|
101 |
26 81 82 83 85 88 89 92 96 100
|
funcco |
|
102 |
|
eqid |
|
103 |
|
eqid |
|
104 |
25 14 15 48 49 45 47 45 53 102 103 82 51 53 93 55 54 97
|
xpcco2 |
|
105 |
104
|
fveq2d |
|
106 |
|
df-ov |
|
107 |
105 106
|
eqtr4di |
|
108 |
14 48 76 57 45 102 51 54
|
catrid |
|
109 |
15 49 71 41 47 103 53 55
|
catlid |
|
110 |
108 109
|
oveq12d |
|
111 |
107 110
|
eqtrd |
|
112 |
80 101 111
|
3eqtr2d |
|
113 |
56 112
|
eqtrd |
|
114 |
113
|
ralrimivva |
|
115 |
|
eqid |
|
116 |
31
|
ad2antrr |
|
117 |
26 81 115 116 87 91
|
funcf2 |
|
118 |
25 14 15 48 49 44 46 50 52 81
|
xpchom2 |
|
119 |
118
|
feq2d |
|
120 |
117 119
|
mpbid |
|
121 |
120
|
ffnd |
|
122 |
26 81 115 84 87 91
|
funcf2 |
|
123 |
118
|
feq2d |
|
124 |
122 123
|
mpbid |
|
125 |
124
|
ffnd |
|
126 |
|
eqfnov2 |
|
127 |
121 125 126
|
syl2anc |
|
128 |
114 127
|
mpbird |
|
129 |
128
|
ralrimivva |
|
130 |
129
|
ralrimivva |
|
131 |
|
oveq2 |
|
132 |
|
oveq2 |
|
133 |
131 132
|
eqeq12d |
|
134 |
133
|
ralxp |
|
135 |
|
oveq1 |
|
136 |
|
oveq1 |
|
137 |
135 136
|
eqeq12d |
|
138 |
137
|
2ralbidv |
|
139 |
134 138
|
syl5bb |
|
140 |
139
|
ralxp |
|
141 |
130 140
|
sylibr |
|
142 |
26 31
|
funcfn2 |
|
143 |
26 35
|
funcfn2 |
|
144 |
|
eqfnov2 |
|
145 |
142 143 144
|
syl2anc |
|
146 |
141 145
|
mpbird |
|
147 |
40 146
|
opeq12d |
|
148 |
|
1st2nd |
|
149 |
28 29 148
|
sylancr |
|
150 |
|
1st2nd |
|
151 |
28 4 150
|
sylancr |
|
152 |
147 149 151
|
3eqtr4d |
|