Metamath Proof Explorer


Theorem upgr4cycl4dv4e

Description: If there is a cycle of length 4 in a pseudograph, there are four (different) vertices in the graph which are mutually connected by edges. (Contributed by Alexander van der Vekens, 9-Nov-2017) (Revised by AV, 13-Feb-2021)

Ref Expression
Hypotheses upgr4cycl4dv4e.v V=VtxG
upgr4cycl4dv4e.e E=EdgG
Assertion upgr4cycl4dv4e GUPGraphFCyclesGPF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd

Proof

Step Hyp Ref Expression
1 upgr4cycl4dv4e.v V=VtxG
2 upgr4cycl4dv4e.e E=EdgG
3 cyclprop FCyclesGPFPathsGPP0=PF
4 pthiswlk FPathsGPFWalksGP
5 2 upgrwlkvtxedg GUPGraphFWalksGPk0..^FPkPk+1E
6 fveq2 F=4PF=P4
7 6 eqeq2d F=4P0=PFP0=P4
8 7 anbi2d F=4FPathsGPP0=PFFPathsGPP0=P4
9 oveq2 F=40..^F=0..^4
10 fzo0to42pr 0..^4=0123
11 9 10 eqtrdi F=40..^F=0123
12 11 raleqdv F=4k0..^FPkPk+1Ek0123PkPk+1E
13 ralunb k0123PkPk+1Ek01PkPk+1Ek23PkPk+1E
14 c0ex 0V
15 1ex 1V
16 fveq2 k=0Pk=P0
17 fv0p1e1 k=0Pk+1=P1
18 16 17 preq12d k=0PkPk+1=P0P1
19 18 eleq1d k=0PkPk+1EP0P1E
20 fveq2 k=1Pk=P1
21 oveq1 k=1k+1=1+1
22 1p1e2 1+1=2
23 21 22 eqtrdi k=1k+1=2
24 23 fveq2d k=1Pk+1=P2
25 20 24 preq12d k=1PkPk+1=P1P2
26 25 eleq1d k=1PkPk+1EP1P2E
27 14 15 19 26 ralpr k01PkPk+1EP0P1EP1P2E
28 2ex 2V
29 3ex 3V
30 fveq2 k=2Pk=P2
31 oveq1 k=2k+1=2+1
32 2p1e3 2+1=3
33 31 32 eqtrdi k=2k+1=3
34 33 fveq2d k=2Pk+1=P3
35 30 34 preq12d k=2PkPk+1=P2P3
36 35 eleq1d k=2PkPk+1EP2P3E
37 fveq2 k=3Pk=P3
38 oveq1 k=3k+1=3+1
39 3p1e4 3+1=4
40 38 39 eqtrdi k=3k+1=4
41 40 fveq2d k=3Pk+1=P4
42 37 41 preq12d k=3PkPk+1=P3P4
43 42 eleq1d k=3PkPk+1EP3P4E
44 28 29 36 43 ralpr k23PkPk+1EP2P3EP3P4E
45 27 44 anbi12i k01PkPk+1Ek23PkPk+1EP0P1EP1P2EP2P3EP3P4E
46 13 45 bitri k0123PkPk+1EP0P1EP1P2EP2P3EP3P4E
47 12 46 bitrdi F=4k0..^FPkPk+1EP0P1EP1P2EP2P3EP3P4E
48 8 47 anbi12d F=4FPathsGPP0=PFk0..^FPkPk+1EFPathsGPP0=P4P0P1EP1P2EP2P3EP3P4E
49 preq2 P4=P0P3P4=P3P0
50 49 eleq1d P4=P0P3P4EP3P0E
51 50 eqcoms P0=P4P3P4EP3P0E
52 51 anbi2d P0=P4P2P3EP3P4EP2P3EP3P0E
53 52 anbi2d P0=P4P0P1EP1P2EP2P3EP3P4EP0P1EP1P2EP2P3EP3P0E
54 53 adantl F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P4EP0P1EP1P2EP2P3EP3P0E
55 4nn0 40
56 55 a1i F=4FPathsGP40
57 1 wlkp FWalksGPP:0FV
58 oveq2 F=40F=04
59 58 feq2d F=4P:0FVP:04V
60 59 biimpcd P:0FVF=4P:04V
61 4 57 60 3syl FPathsGPF=4P:04V
62 61 impcom F=4FPathsGPP:04V
63 id 4040
64 0nn0 00
65 64 a1i 4000
66 4pos 0<4
67 66 a1i 400<4
68 63 65 67 3jca 4040000<4
69 fvffz0 40000<4P:04VP0V
70 68 69 sylan 40P:04VP0V
71 70 ad2antlr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP0V
72 1nn0 10
73 72 a1i 4010
74 1lt4 1<4
75 74 a1i 401<4
76 63 73 75 3jca 4040101<4
77 fvffz0 40101<4P:04VP1V
78 76 77 sylan 40P:04VP1V
79 78 ad2antlr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP1V
80 2nn0 20
81 80 a1i 4020
82 2lt4 2<4
83 82 a1i 402<4
84 63 81 83 3jca 4040202<4
85 fvffz0 40202<4P:04VP2V
86 84 85 sylan 40P:04VP2V
87 86 ad2antlr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP2V
88 3nn0 30
89 88 a1i 4030
90 3lt4 3<4
91 90 a1i 403<4
92 63 89 91 3jca 4040303<4
93 fvffz0 40303<4P:04VP3V
94 92 93 sylan 40P:04VP3V
95 94 ad2antlr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP3V
96 simpr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP0P1EP1P2EP2P3EP3P0E
97 simplr F=4FPathsGP40P:04VFPathsGP
98 breq2 F=41<F1<4
99 74 98 mpbiri F=41<F
100 99 ad2antrr F=4FPathsGP40P:04V1<F
101 simpll F=4FPathsGP40P:04VF=4
102 9 ad2antrr F=4FPathsGP40P:04V0..^F=0..^4
103 4nn 4
104 lbfzo0 00..^44
105 103 104 mpbir 00..^4
106 eleq2 0..^F=0..^400..^F00..^4
107 105 106 mpbiri 0..^F=0..^400..^F
108 107 adantl F=40..^F=0..^400..^F
109 pthdadjvtx FPathsGP1<F00..^FP0P0+1
110 108 109 syl3an3 FPathsGP1<FF=40..^F=0..^4P0P0+1
111 1e0p1 1=0+1
112 111 fveq2i P1=P0+1
113 112 neeq2i P0P1P0P0+1
114 110 113 sylibr FPathsGP1<FF=40..^F=0..^4P0P1
115 simp1 FPathsGP1<FF=40..^F=0..^4FPathsGP
116 elfzo0 20..^42042<4
117 80 103 82 116 mpbir3an 20..^4
118 2ne0 20
119 fzo1fzo0n0 21..^420..^420
120 117 118 119 mpbir2an 21..^4
121 oveq2 F=41..^F=1..^4
122 120 121 eleqtrrid F=421..^F
123 0elfz 40004
124 55 123 ax-mp 004
125 124 58 eleqtrrid F=400F
126 118 a1i F=420
127 122 125 126 3jca F=421..^F00F20
128 127 adantr F=40..^F=0..^421..^F00F20
129 128 3ad2ant3 FPathsGP1<FF=40..^F=0..^421..^F00F20
130 pthdivtx FPathsGP21..^F00F20P2P0
131 115 129 130 syl2anc FPathsGP1<FF=40..^F=0..^4P2P0
132 131 necomd FPathsGP1<FF=40..^F=0..^4P0P2
133 elfzo0 30..^43043<4
134 88 103 90 133 mpbir3an 30..^4
135 3ne0 30
136 fzo1fzo0n0 31..^430..^430
137 134 135 136 mpbir2an 31..^4
138 137 121 eleqtrrid F=431..^F
139 135 a1i F=430
140 138 125 139 3jca F=431..^F00F30
141 140 adantr F=40..^F=0..^431..^F00F30
142 141 3ad2ant3 FPathsGP1<FF=40..^F=0..^431..^F00F30
143 pthdivtx FPathsGP31..^F00F30P3P0
144 115 142 143 syl2anc FPathsGP1<FF=40..^F=0..^4P3P0
145 144 necomd FPathsGP1<FF=40..^F=0..^4P0P3
146 114 132 145 3jca FPathsGP1<FF=40..^F=0..^4P0P1P0P2P0P3
147 elfzo0 10..^41041<4
148 72 103 74 147 mpbir3an 10..^4
149 eleq2 0..^F=0..^410..^F10..^4
150 148 149 mpbiri 0..^F=0..^410..^F
151 150 adantl F=40..^F=0..^410..^F
152 pthdadjvtx FPathsGP1<F10..^FP1P1+1
153 151 152 syl3an3 FPathsGP1<FF=40..^F=0..^4P1P1+1
154 df-2 2=1+1
155 154 fveq2i P2=P1+1
156 155 neeq2i P1P2P1P1+1
157 153 156 sylibr FPathsGP1<FF=40..^F=0..^4P1P2
158 ax-1ne0 10
159 fzo1fzo0n0 11..^410..^410
160 148 158 159 mpbir2an 11..^4
161 160 121 eleqtrrid F=411..^F
162 3re 3
163 4re 4
164 162 163 90 ltleii 34
165 elfz2nn0 304304034
166 88 55 164 165 mpbir3an 304
167 166 58 eleqtrrid F=430F
168 1re 1
169 1lt3 1<3
170 168 169 ltneii 13
171 170 a1i F=413
172 161 167 171 3jca F=411..^F30F13
173 172 adantr F=40..^F=0..^411..^F30F13
174 173 3ad2ant3 FPathsGP1<FF=40..^F=0..^411..^F30F13
175 pthdivtx FPathsGP11..^F30F13P1P3
176 115 174 175 syl2anc FPathsGP1<FF=40..^F=0..^4P1P3
177 eleq2 0..^F=0..^420..^F20..^4
178 117 177 mpbiri 0..^F=0..^420..^F
179 178 adantl F=40..^F=0..^420..^F
180 pthdadjvtx FPathsGP1<F20..^FP2P2+1
181 179 180 syl3an3 FPathsGP1<FF=40..^F=0..^4P2P2+1
182 df-3 3=2+1
183 182 fveq2i P3=P2+1
184 183 neeq2i P2P3P2P2+1
185 181 184 sylibr FPathsGP1<FF=40..^F=0..^4P2P3
186 157 176 185 3jca FPathsGP1<FF=40..^F=0..^4P1P2P1P3P2P3
187 146 186 jca FPathsGP1<FF=40..^F=0..^4P0P1P0P2P0P3P1P2P1P3P2P3
188 97 100 101 102 187 syl112anc F=4FPathsGP40P:04VP0P1P0P2P0P3P1P2P1P3P2P3
189 188 adantr F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP0P1P0P2P0P3P1P2P1P3P2P3
190 preq2 c=P2P1c=P1P2
191 190 eleq1d c=P2P1cEP1P2E
192 191 anbi2d c=P2P0P1EP1cEP0P1EP1P2E
193 preq1 c=P2cd=P2d
194 193 eleq1d c=P2cdEP2dE
195 194 anbi1d c=P2cdEdP0EP2dEdP0E
196 192 195 anbi12d c=P2P0P1EP1cEcdEdP0EP0P1EP1P2EP2dEdP0E
197 neeq2 c=P2P0cP0P2
198 197 3anbi2d c=P2P0P1P0cP0dP0P1P0P2P0d
199 neeq2 c=P2P1cP1P2
200 neeq1 c=P2cdP2d
201 199 200 3anbi13d c=P2P1cP1dcdP1P2P1dP2d
202 198 201 anbi12d c=P2P0P1P0cP0dP1cP1dcdP0P1P0P2P0dP1P2P1dP2d
203 196 202 anbi12d c=P2P0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcdP0P1EP1P2EP2dEdP0EP0P1P0P2P0dP1P2P1dP2d
204 preq2 d=P3P2d=P2P3
205 204 eleq1d d=P3P2dEP2P3E
206 preq1 d=P3dP0=P3P0
207 206 eleq1d d=P3dP0EP3P0E
208 205 207 anbi12d d=P3P2dEdP0EP2P3EP3P0E
209 208 anbi2d d=P3P0P1EP1P2EP2dEdP0EP0P1EP1P2EP2P3EP3P0E
210 neeq2 d=P3P0dP0P3
211 210 3anbi3d d=P3P0P1P0P2P0dP0P1P0P2P0P3
212 neeq2 d=P3P1dP1P3
213 neeq2 d=P3P2dP2P3
214 212 213 3anbi23d d=P3P1P2P1dP2dP1P2P1P3P2P3
215 211 214 anbi12d d=P3P0P1P0P2P0dP1P2P1dP2dP0P1P0P2P0P3P1P2P1P3P2P3
216 209 215 anbi12d d=P3P0P1EP1P2EP2dEdP0EP0P1P0P2P0dP1P2P1dP2dP0P1EP1P2EP2P3EP3P0EP0P1P0P2P0P3P1P2P1P3P2P3
217 203 216 rspc2ev P2VP3VP0P1EP1P2EP2P3EP3P0EP0P1P0P2P0P3P1P2P1P3P2P3cVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
218 87 95 96 189 217 syl112anc F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
219 71 79 218 3jca F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
220 219 exp31 F=4FPathsGP40P:04VP0P1EP1P2EP2P3EP3P0EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
221 56 62 220 mp2and F=4FPathsGPP0P1EP1P2EP2P3EP3P0EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
222 221 adantr F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P0EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
223 54 222 sylbid F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P4EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
224 223 exp31 F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P4EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
225 224 imp4c F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P4EP0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
226 preq1 a=P0ab=P0b
227 226 eleq1d a=P0abEP0bE
228 227 anbi1d a=P0abEbcEP0bEbcE
229 preq2 a=P0da=dP0
230 229 eleq1d a=P0daEdP0E
231 230 anbi2d a=P0cdEdaEcdEdP0E
232 228 231 anbi12d a=P0abEbcEcdEdaEP0bEbcEcdEdP0E
233 neeq1 a=P0abP0b
234 neeq1 a=P0acP0c
235 neeq1 a=P0adP0d
236 233 234 235 3anbi123d a=P0abacadP0bP0cP0d
237 236 anbi1d a=P0abacadbcbdcdP0bP0cP0dbcbdcd
238 232 237 anbi12d a=P0abEbcEcdEdaEabacadbcbdcdP0bEbcEcdEdP0EP0bP0cP0dbcbdcd
239 238 2rexbidv a=P0cVdVabEbcEcdEdaEabacadbcbdcdcVdVP0bEbcEcdEdP0EP0bP0cP0dbcbdcd
240 preq2 b=P1P0b=P0P1
241 240 eleq1d b=P1P0bEP0P1E
242 preq1 b=P1bc=P1c
243 242 eleq1d b=P1bcEP1cE
244 241 243 anbi12d b=P1P0bEbcEP0P1EP1cE
245 244 anbi1d b=P1P0bEbcEcdEdP0EP0P1EP1cEcdEdP0E
246 neeq2 b=P1P0bP0P1
247 246 3anbi1d b=P1P0bP0cP0dP0P1P0cP0d
248 neeq1 b=P1bcP1c
249 neeq1 b=P1bdP1d
250 248 249 3anbi12d b=P1bcbdcdP1cP1dcd
251 247 250 anbi12d b=P1P0bP0cP0dbcbdcdP0P1P0cP0dP1cP1dcd
252 245 251 anbi12d b=P1P0bEbcEcdEdP0EP0bP0cP0dbcbdcdP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
253 252 2rexbidv b=P1cVdVP0bEbcEcdEdP0EP0bP0cP0dbcbdcdcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcd
254 239 253 rspc2ev P0VP1VcVdVP0P1EP1cEcdEdP0EP0P1P0cP0dP1cP1dcdaVbVcVdVabEbcEcdEdaEabacadbcbdcd
255 225 254 syl6 F=4FPathsGPP0=P4P0P1EP1P2EP2P3EP3P4EaVbVcVdVabEbcEcdEdaEabacadbcbdcd
256 48 255 sylbid F=4FPathsGPP0=PFk0..^FPkPk+1EaVbVcVdVabEbcEcdEdaEabacadbcbdcd
257 256 expd F=4FPathsGPP0=PFk0..^FPkPk+1EaVbVcVdVabEbcEcdEdaEabacadbcbdcd
258 257 com13 k0..^FPkPk+1EFPathsGPP0=PFF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
259 5 258 syl GUPGraphFWalksGPFPathsGPP0=PFF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
260 259 expcom FWalksGPGUPGraphFPathsGPP0=PFF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
261 260 com23 FWalksGPFPathsGPP0=PFGUPGraphF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
262 261 expd FWalksGPFPathsGPP0=PFGUPGraphF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
263 4 262 mpcom FPathsGPP0=PFGUPGraphF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
264 263 imp FPathsGPP0=PFGUPGraphF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
265 3 264 syl FCyclesGPGUPGraphF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd
266 265 3imp21 GUPGraphFCyclesGPF=4aVbVcVdVabEbcEcdEdaEabacadbcbdcd