Metamath Proof Explorer


Theorem utop2nei

Description: For any symmetrical entourage V and any relation M , build a neighborhood of M . First part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018)

Ref Expression
Hypothesis utoptop.1 J=unifTopU
Assertion utop2nei UUnifOnXVUV-1=VMX×XVMVneiJ×tJM

Proof

Step Hyp Ref Expression
1 utoptop.1 J=unifTopU
2 utoptop UUnifOnXunifTopUTop
3 1 2 eqeltrid UUnifOnXJTop
4 txtop JTopJTopJ×tJTop
5 3 3 4 syl2anc UUnifOnXJ×tJTop
6 5 3ad2ant1 UUnifOnXVUV-1=VMX×XJ×tJTop
7 6 adantr UUnifOnXVUV-1=VMX×XM=J×tJTop
8 0nei J×tJTopneiJ×tJ
9 7 8 syl UUnifOnXVUV-1=VMX×XM=neiJ×tJ
10 coeq1 M=MV=V
11 co01 V=
12 10 11 eqtrdi M=MV=
13 12 coeq2d M=VMV=V
14 co02 V=
15 13 14 eqtrdi M=VMV=
16 15 adantl UUnifOnXVUV-1=VMX×XM=VMV=
17 simpr UUnifOnXVUV-1=VMX×XM=M=
18 17 fveq2d UUnifOnXVUV-1=VMX×XM=neiJ×tJM=neiJ×tJ
19 9 16 18 3eltr4d UUnifOnXVUV-1=VMX×XM=VMVneiJ×tJM
20 6 adantr UUnifOnXVUV-1=VMX×XrMJ×tJTop
21 simpl1 UUnifOnXVUV-1=VMX×XrMUUnifOnX
22 21 3 syl UUnifOnXVUV-1=VMX×XrMJTop
23 simpl2l UUnifOnXVUV-1=VMX×XrMVU
24 simp3 UUnifOnXVUV-1=VMX×XMX×X
25 24 sselda UUnifOnXVUV-1=VMX×XrMrX×X
26 xp1st rX×X1strX
27 25 26 syl UUnifOnXVUV-1=VMX×XrM1strX
28 1 utopsnnei UUnifOnXVU1strXV1strneiJ1str
29 21 23 27 28 syl3anc UUnifOnXVUV-1=VMX×XrMV1strneiJ1str
30 xp2nd rX×X2ndrX
31 25 30 syl UUnifOnXVUV-1=VMX×XrM2ndrX
32 1 utopsnnei UUnifOnXVU2ndrXV2ndrneiJ2ndr
33 21 23 31 32 syl3anc UUnifOnXVUV-1=VMX×XrMV2ndrneiJ2ndr
34 eqid J=J
35 34 34 neitx JTopJTopV1strneiJ1strV2ndrneiJ2ndrV1str×V2ndrneiJ×tJ1str×2ndr
36 22 22 29 33 35 syl22anc UUnifOnXVUV-1=VMX×XrMV1str×V2ndrneiJ×tJ1str×2ndr
37 fvex 1strV
38 fvex 2ndrV
39 37 38 xpsn 1str×2ndr=1str2ndr
40 39 fveq2i neiJ×tJ1str×2ndr=neiJ×tJ1str2ndr
41 36 40 eleqtrdi UUnifOnXVUV-1=VMX×XrMV1str×V2ndrneiJ×tJ1str2ndr
42 24 adantr UUnifOnXVUV-1=VMX×XrMMX×X
43 xpss X×XV×V
44 sstr MX×XX×XV×VMV×V
45 43 44 mpan2 MX×XMV×V
46 df-rel RelMMV×V
47 45 46 sylibr MX×XRelM
48 42 47 syl UUnifOnXVUV-1=VMX×XrMRelM
49 1st2nd RelMrMr=1str2ndr
50 48 49 sylancom UUnifOnXVUV-1=VMX×XrMr=1str2ndr
51 50 sneqd UUnifOnXVUV-1=VMX×XrMr=1str2ndr
52 51 fveq2d UUnifOnXVUV-1=VMX×XrMneiJ×tJr=neiJ×tJ1str2ndr
53 41 52 eleqtrrd UUnifOnXVUV-1=VMX×XrMV1str×V2ndrneiJ×tJr
54 relxp RelV1str×V2ndr
55 54 a1i UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrRelV1str×V2ndr
56 1st2nd RelV1str×V2ndrzV1str×V2ndrz=1stz2ndz
57 55 56 sylancom UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrz=1stz2ndz
58 simpll2 UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrVUV-1=V
59 58 simprd UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrV-1=V
60 simpll1 UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrUUnifOnX
61 58 simpld UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrVU
62 ustrel UUnifOnXVURelV
63 60 61 62 syl2anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrRelV
64 xp1st zV1str×V2ndr1stzV1str
65 64 adantl UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1stzV1str
66 elrelimasn RelV1stzV1str1strV1stz
67 66 biimpa RelV1stzV1str1strV1stz
68 63 65 67 syl2anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1strV1stz
69 fvex 1stzV
70 37 69 brcnv 1strV-11stz1stzV1str
71 breq V-1=V1strV-11stz1strV1stz
72 70 71 bitr3id V-1=V1stzV1str1strV1stz
73 72 biimpar V-1=V1strV1stz1stzV1str
74 59 68 73 syl2anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1stzV1str
75 simpll3 UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrMX×X
76 simplr UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrrM
77 1st2ndbr RelMrM1strM2ndr
78 47 77 sylan MX×XrM1strM2ndr
79 75 76 78 syl2anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1strM2ndr
80 xp2nd zV1str×V2ndr2ndzV2ndr
81 80 adantl UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr2ndzV2ndr
82 elrelimasn RelV2ndzV2ndr2ndrV2ndz
83 82 biimpa RelV2ndzV2ndr2ndrV2ndz
84 63 81 83 syl2anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr2ndrV2ndz
85 69 38 37 3pm3.2i 1stzV2ndrV1strV
86 brcogw 1stzV2ndrV1strV1stzV1str1strM2ndr1stzMV2ndr
87 85 86 mpan 1stzV1str1strM2ndr1stzMV2ndr
88 fvex 2ndzV
89 69 88 38 3pm3.2i 1stzV2ndzV2ndrV
90 brcogw 1stzV2ndzV2ndrV1stzMV2ndr2ndrV2ndz1stzVMV2ndz
91 89 90 mpan 1stzMV2ndr2ndrV2ndz1stzVMV2ndz
92 87 91 sylan 1stzV1str1strM2ndr2ndrV2ndz1stzVMV2ndz
93 74 79 84 92 syl21anc UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1stzVMV2ndz
94 df-br 1stzVMV2ndz1stz2ndzVMV
95 93 94 sylib UUnifOnXVUV-1=VMX×XrMzV1str×V2ndr1stz2ndzVMV
96 57 95 eqeltrd UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrzVMV
97 96 ex UUnifOnXVUV-1=VMX×XrMzV1str×V2ndrzVMV
98 97 ssrdv UUnifOnXVUV-1=VMX×XrMV1str×V2ndrVMV
99 simp1 UUnifOnXVUV-1=VMX×XUUnifOnX
100 simp2l UUnifOnXVUV-1=VMX×XVU
101 ustssxp UUnifOnXVUVX×X
102 99 100 101 syl2anc UUnifOnXVUV-1=VMX×XVX×X
103 coss1 VX×XVMVX×XMV
104 102 103 syl UUnifOnXVUV-1=VMX×XVMVX×XMV
105 coss1 MX×XMVX×XV
106 24 105 syl UUnifOnXVUV-1=VMX×XMVX×XV
107 coss2 VX×XX×XVX×XX×X
108 xpcoid X×XX×X=X×X
109 107 108 sseqtrdi VX×XX×XVX×X
110 102 109 syl UUnifOnXVUV-1=VMX×XX×XVX×X
111 106 110 sstrd UUnifOnXVUV-1=VMX×XMVX×X
112 coss2 MVX×XX×XMVX×XX×X
113 112 108 sseqtrdi MVX×XX×XMVX×X
114 111 113 syl UUnifOnXVUV-1=VMX×XX×XMVX×X
115 104 114 sstrd UUnifOnXVUV-1=VMX×XVMVX×X
116 utopbas UUnifOnXX=unifTopU
117 1 unieqi J=unifTopU
118 116 117 eqtr4di UUnifOnXX=J
119 118 sqxpeqd UUnifOnXX×X=J×J
120 34 34 txuni JTopJTopJ×J=J×tJ
121 3 3 120 syl2anc UUnifOnXJ×J=J×tJ
122 119 121 eqtrd UUnifOnXX×X=J×tJ
123 122 3ad2ant1 UUnifOnXVUV-1=VMX×XX×X=J×tJ
124 115 123 sseqtrd UUnifOnXVUV-1=VMX×XVMVJ×tJ
125 124 adantr UUnifOnXVUV-1=VMX×XrMVMVJ×tJ
126 eqid J×tJ=J×tJ
127 126 ssnei2 J×tJTopV1str×V2ndrneiJ×tJrV1str×V2ndrVMVVMVJ×tJVMVneiJ×tJr
128 20 53 98 125 127 syl22anc UUnifOnXVUV-1=VMX×XrMVMVneiJ×tJr
129 128 ralrimiva UUnifOnXVUV-1=VMX×XrMVMVneiJ×tJr
130 129 adantr UUnifOnXVUV-1=VMX×XMrMVMVneiJ×tJr
131 6 adantr UUnifOnXVUV-1=VMX×XMJ×tJTop
132 24 123 sseqtrd UUnifOnXVUV-1=VMX×XMJ×tJ
133 132 adantr UUnifOnXVUV-1=VMX×XMMJ×tJ
134 simpr UUnifOnXVUV-1=VMX×XMM
135 126 neips J×tJTopMJ×tJMVMVneiJ×tJMrMVMVneiJ×tJr
136 131 133 134 135 syl3anc UUnifOnXVUV-1=VMX×XMVMVneiJ×tJMrMVMVneiJ×tJr
137 130 136 mpbird UUnifOnXVUV-1=VMX×XMVMVneiJ×tJM
138 19 137 pm2.61dane UUnifOnXVUV-1=VMX×XVMVneiJ×tJM