Metamath Proof Explorer


Theorem vdwlem2

Description: Lemma for vdw . (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Hypotheses vdwlem2.r φRFin
vdwlem2.k φK0
vdwlem2.w φW
vdwlem2.n φN
vdwlem2.f φF:1MR
vdwlem2.m φMW+N
vdwlem2.g G=x1WFx+N
Assertion vdwlem2 φKMonoAPGKMonoAPF

Proof

Step Hyp Ref Expression
1 vdwlem2.r φRFin
2 vdwlem2.k φK0
3 vdwlem2.w φW
4 vdwlem2.n φN
5 vdwlem2.f φF:1MR
6 vdwlem2.m φMW+N
7 vdwlem2.g G=x1WFx+N
8 id aa
9 nnaddcl aNa+N
10 8 4 9 syl2anr φaa+N
11 simpllr φadaAPKdG-1cm0K1a
12 11 nncnd φadaAPKdG-1cm0K1a
13 4 ad3antrrr φadaAPKdG-1cm0K1N
14 13 nncnd φadaAPKdG-1cm0K1N
15 elfznn0 m0K1m0
16 15 adantl φadaAPKdG-1cm0K1m0
17 16 nn0cnd φadaAPKdG-1cm0K1m
18 simplrl φadaAPKdG-1cm0K1d
19 18 nncnd φadaAPKdG-1cm0K1d
20 17 19 mulcld φadaAPKdG-1cm0K1md
21 12 14 20 add32d φadaAPKdG-1cm0K1a+N+md=a+md+N
22 oveq1 x=a+mdx+N=a+md+N
23 22 eleq1d x=a+mdx+N1Ma+md+N1M
24 elfznn x1Wx
25 nnaddcl xNx+N
26 24 4 25 syl2anr φx1Wx+N
27 nnuz =1
28 26 27 eleqtrdi φx1Wx+N1
29 elfzuz3 x1WWx
30 4 nnzd φN
31 eluzadd WxNW+Nx+N
32 29 30 31 syl2anr φx1WW+Nx+N
33 uztrn MW+NW+Nx+NMx+N
34 6 32 33 syl2an2r φx1WMx+N
35 elfzuzb x+N1Mx+N1Mx+N
36 28 34 35 sylanbrc φx1Wx+N1M
37 36 ralrimiva φx1Wx+N1M
38 37 ad3antrrr φadaAPKdG-1cm0K1x1Wx+N1M
39 simplrr φadaAPKdG-1cm0K1aAPKdG-1c
40 eqid a+md=a+md
41 oveq1 n=mnd=md
42 41 oveq2d n=ma+nd=a+md
43 42 rspceeqv m0K1a+md=a+mdn0K1a+md=a+nd
44 40 43 mpan2 m0K1n0K1a+md=a+nd
45 44 adantl φadaAPKdG-1cm0K1n0K1a+md=a+nd
46 2 ad2antrr φadaAPKdG-1cK0
47 46 adantr φadaAPKdG-1cm0K1K0
48 vdwapval K0ada+mdaAPKdn0K1a+md=a+nd
49 47 11 18 48 syl3anc φadaAPKdG-1cm0K1a+mdaAPKdn0K1a+md=a+nd
50 45 49 mpbird φadaAPKdG-1cm0K1a+mdaAPKd
51 39 50 sseldd φadaAPKdG-1cm0K1a+mdG-1c
52 5 ffvelcdmda φx+N1MFx+NR
53 36 52 syldan φx1WFx+NR
54 53 7 fmptd φG:1WR
55 54 ffnd φGFn1W
56 55 ad3antrrr φadaAPKdG-1cm0K1GFn1W
57 fniniseg GFn1Wa+mdG-1ca+md1WGa+md=c
58 56 57 syl φadaAPKdG-1cm0K1a+mdG-1ca+md1WGa+md=c
59 51 58 mpbid φadaAPKdG-1cm0K1a+md1WGa+md=c
60 59 simpld φadaAPKdG-1cm0K1a+md1W
61 23 38 60 rspcdva φadaAPKdG-1cm0K1a+md+N1M
62 21 61 eqeltrd φadaAPKdG-1cm0K1a+N+md1M
63 21 fveq2d φadaAPKdG-1cm0K1Fa+N+md=Fa+md+N
64 22 fveq2d x=a+mdFx+N=Fa+md+N
65 fvex Fa+md+NV
66 64 7 65 fvmpt a+md1WGa+md=Fa+md+N
67 60 66 syl φadaAPKdG-1cm0K1Ga+md=Fa+md+N
68 59 simprd φadaAPKdG-1cm0K1Ga+md=c
69 63 67 68 3eqtr2d φadaAPKdG-1cm0K1Fa+N+md=c
70 62 69 jca φadaAPKdG-1cm0K1a+N+md1MFa+N+md=c
71 eleq1 x=a+N+mdx1Ma+N+md1M
72 fveqeq2 x=a+N+mdFx=cFa+N+md=c
73 71 72 anbi12d x=a+N+mdx1MFx=ca+N+md1MFa+N+md=c
74 70 73 syl5ibrcom φadaAPKdG-1cm0K1x=a+N+mdx1MFx=c
75 74 rexlimdva φadaAPKdG-1cm0K1x=a+N+mdx1MFx=c
76 10 adantr φadaAPKdG-1ca+N
77 simprl φadaAPKdG-1cd
78 vdwapval K0a+Ndxa+NAPKdm0K1x=a+N+md
79 46 76 77 78 syl3anc φadaAPKdG-1cxa+NAPKdm0K1x=a+N+md
80 5 ffnd φFFn1M
81 80 ad2antrr φadaAPKdG-1cFFn1M
82 fniniseg FFn1MxF-1cx1MFx=c
83 81 82 syl φadaAPKdG-1cxF-1cx1MFx=c
84 75 79 83 3imtr4d φadaAPKdG-1cxa+NAPKdxF-1c
85 84 ssrdv φadaAPKdG-1ca+NAPKdF-1c
86 85 expr φadaAPKdG-1ca+NAPKdF-1c
87 86 reximdva φadaAPKdG-1cda+NAPKdF-1c
88 oveq1 b=a+NbAPKd=a+NAPKd
89 88 sseq1d b=a+NbAPKdF-1ca+NAPKdF-1c
90 89 rexbidv b=a+NdbAPKdF-1cda+NAPKdF-1c
91 90 rspcev a+Nda+NAPKdF-1cbdbAPKdF-1c
92 10 87 91 syl6an φadaAPKdG-1cbdbAPKdF-1c
93 92 rexlimdva φadaAPKdG-1cbdbAPKdF-1c
94 93 eximdv φcadaAPKdG-1ccbdbAPKdF-1c
95 ovex 1WV
96 95 2 54 vdwmc φKMonoAPGcadaAPKdG-1c
97 ovex 1MV
98 97 2 5 vdwmc φKMonoAPFcbdbAPKdF-1c
99 94 96 98 3imtr4d φKMonoAPGKMonoAPF