Metamath Proof Explorer


Theorem volfiniune

Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun what voliune is to voliun . (Contributed by Thierry Arnoux, 16-Oct-2017)

Ref Expression
Assertion volfiniune A Fin n A B dom vol Disj n A B vol n A B = * n A vol B

Proof

Step Hyp Ref Expression
1 simpl1 A Fin n A B dom vol Disj n A B n A vol B A Fin
2 simpl2 A Fin n A B dom vol Disj n A B n A vol B n A B dom vol
3 simpr A Fin n A B dom vol Disj n A B n A vol B n A vol B
4 r19.26 n A B dom vol vol B n A B dom vol n A vol B
5 2 3 4 sylanbrc A Fin n A B dom vol Disj n A B n A vol B n A B dom vol vol B
6 simpl3 A Fin n A B dom vol Disj n A B n A vol B Disj n A B
7 volfiniun A Fin n A B dom vol vol B Disj n A B vol n A B = n A vol B
8 1 5 6 7 syl3anc A Fin n A B dom vol Disj n A B n A vol B vol n A B = n A vol B
9 nfcv _ n A
10 9 nfel1 n A Fin
11 nfra1 n n A B dom vol
12 nfdisj1 n Disj n A B
13 10 11 12 nf3an n A Fin n A B dom vol Disj n A B
14 nfra1 n n A vol B
15 13 14 nfan n A Fin n A B dom vol Disj n A B n A vol B
16 3 r19.21bi A Fin n A B dom vol Disj n A B n A vol B n A vol B
17 rspa n A B dom vol n A B dom vol
18 volf vol : dom vol 0 +∞
19 18 ffvelrni B dom vol vol B 0 +∞
20 17 19 syl n A B dom vol n A vol B 0 +∞
21 2 20 sylan A Fin n A B dom vol Disj n A B n A vol B n A vol B 0 +∞
22 0xr 0 *
23 pnfxr +∞ *
24 elicc1 0 * +∞ * vol B 0 +∞ vol B * 0 vol B vol B +∞
25 22 23 24 mp2an vol B 0 +∞ vol B * 0 vol B vol B +∞
26 25 simp2bi vol B 0 +∞ 0 vol B
27 21 26 syl A Fin n A B dom vol Disj n A B n A vol B n A 0 vol B
28 ltpnf vol B vol B < +∞
29 16 28 syl A Fin n A B dom vol Disj n A B n A vol B n A vol B < +∞
30 0re 0
31 elico2 0 +∞ * vol B 0 +∞ vol B 0 vol B vol B < +∞
32 30 23 31 mp2an vol B 0 +∞ vol B 0 vol B vol B < +∞
33 16 27 29 32 syl3anbrc A Fin n A B dom vol Disj n A B n A vol B n A vol B 0 +∞
34 9 15 1 33 esumpfinvalf A Fin n A B dom vol Disj n A B n A vol B * n A vol B = n A vol B
35 8 34 eqtr4d A Fin n A B dom vol Disj n A B n A vol B vol n A B = * n A vol B
36 simpr A Fin n A B dom vol Disj n A B n A vol B = +∞ n A vol B = +∞
37 nfv k vol B = +∞
38 nfcv _ n vol
39 nfcsb1v _ n k / n B
40 38 39 nffv _ n vol k / n B
41 40 nfeq1 n vol k / n B = +∞
42 csbeq1a n = k B = k / n B
43 42 fveqeq2d n = k vol B = +∞ vol k / n B = +∞
44 37 41 43 cbvrexw n A vol B = +∞ k A vol k / n B = +∞
45 36 44 sylib A Fin n A B dom vol Disj n A B n A vol B = +∞ k A vol k / n B = +∞
46 39 nfel1 n k / n B dom vol
47 42 eleq1d n = k B dom vol k / n B dom vol
48 46 47 rspc k A n A B dom vol k / n B dom vol
49 48 impcom n A B dom vol k A k / n B dom vol
50 49 adantll A Fin n A B dom vol k A k / n B dom vol
51 finiunmbl A Fin n A B dom vol n A B dom vol
52 51 adantr A Fin n A B dom vol k A n A B dom vol
53 nfcv _ n k
54 9 53 39 42 ssiun2sf k A k / n B n A B
55 54 adantl A Fin n A B dom vol k A k / n B n A B
56 volss k / n B dom vol n A B dom vol k / n B n A B vol k / n B vol n A B
57 50 52 55 56 syl3anc A Fin n A B dom vol k A vol k / n B vol n A B
58 57 3adantl3 A Fin n A B dom vol Disj n A B k A vol k / n B vol n A B
59 58 adantlr A Fin n A B dom vol Disj n A B n A vol B = +∞ k A vol k / n B vol n A B
60 59 ralrimiva A Fin n A B dom vol Disj n A B n A vol B = +∞ k A vol k / n B vol n A B
61 r19.29r k A vol k / n B = +∞ k A vol k / n B vol n A B k A vol k / n B = +∞ vol k / n B vol n A B
62 45 60 61 syl2anc A Fin n A B dom vol Disj n A B n A vol B = +∞ k A vol k / n B = +∞ vol k / n B vol n A B
63 breq1 vol k / n B = +∞ vol k / n B vol n A B +∞ vol n A B
64 63 biimpa vol k / n B = +∞ vol k / n B vol n A B +∞ vol n A B
65 64 reximi k A vol k / n B = +∞ vol k / n B vol n A B k A +∞ vol n A B
66 62 65 syl A Fin n A B dom vol Disj n A B n A vol B = +∞ k A +∞ vol n A B
67 rexex k A +∞ vol n A B k +∞ vol n A B
68 19.9v k +∞ vol n A B +∞ vol n A B
69 67 68 sylib k A +∞ vol n A B +∞ vol n A B
70 66 69 syl A Fin n A B dom vol Disj n A B n A vol B = +∞ +∞ vol n A B
71 iccssxr 0 +∞ *
72 18 ffvelrni n A B dom vol vol n A B 0 +∞
73 71 72 sselid n A B dom vol vol n A B *
74 51 73 syl A Fin n A B dom vol vol n A B *
75 74 3adant3 A Fin n A B dom vol Disj n A B vol n A B *
76 75 adantr A Fin n A B dom vol Disj n A B n A vol B = +∞ vol n A B *
77 xgepnf vol n A B * +∞ vol n A B vol n A B = +∞
78 76 77 syl A Fin n A B dom vol Disj n A B n A vol B = +∞ +∞ vol n A B vol n A B = +∞
79 70 78 mpbid A Fin n A B dom vol Disj n A B n A vol B = +∞ vol n A B = +∞
80 nfre1 n n A vol B = +∞
81 13 80 nfan n A Fin n A B dom vol Disj n A B n A vol B = +∞
82 simpl1 A Fin n A B dom vol Disj n A B n A vol B = +∞ A Fin
83 20 3ad2antl2 A Fin n A B dom vol Disj n A B n A vol B 0 +∞
84 83 adantlr A Fin n A B dom vol Disj n A B n A vol B = +∞ n A vol B 0 +∞
85 81 82 84 36 esumpinfval A Fin n A B dom vol Disj n A B n A vol B = +∞ * n A vol B = +∞
86 79 85 eqtr4d A Fin n A B dom vol Disj n A B n A vol B = +∞ vol n A B = * n A vol B
87 exmid n A vol B ¬ n A vol B
88 rexnal n A ¬ vol B ¬ n A vol B
89 88 orbi2i n A vol B n A ¬ vol B n A vol B ¬ n A vol B
90 87 89 mpbir n A vol B n A ¬ vol B
91 r19.29 n A B dom vol n A ¬ vol B n A B dom vol ¬ vol B
92 xrge0nre vol B 0 +∞ ¬ vol B vol B = +∞
93 19 92 sylan B dom vol ¬ vol B vol B = +∞
94 93 reximi n A B dom vol ¬ vol B n A vol B = +∞
95 91 94 syl n A B dom vol n A ¬ vol B n A vol B = +∞
96 95 ex n A B dom vol n A ¬ vol B n A vol B = +∞
97 96 orim2d n A B dom vol n A vol B n A ¬ vol B n A vol B n A vol B = +∞
98 90 97 mpi n A B dom vol n A vol B n A vol B = +∞
99 98 3ad2ant2 A Fin n A B dom vol Disj n A B n A vol B n A vol B = +∞
100 35 86 99 mpjaodan A Fin n A B dom vol Disj n A B vol n A B = * n A vol B