Metamath Proof Explorer


Theorem voliunlem2

Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)

Ref Expression
Hypotheses voliunlem.3 φ F : dom vol
voliunlem.5 φ Disj i F i
voliunlem.6 H = n vol * x F n
Assertion voliunlem2 φ ran F dom vol

Proof

Step Hyp Ref Expression
1 voliunlem.3 φ F : dom vol
2 voliunlem.5 φ Disj i F i
3 voliunlem.6 H = n vol * x F n
4 1 frnd φ ran F dom vol
5 mblss x dom vol x
6 velpw x 𝒫 x
7 5 6 sylibr x dom vol x 𝒫
8 7 ssriv dom vol 𝒫
9 4 8 sstrdi φ ran F 𝒫
10 sspwuni ran F 𝒫 ran F
11 9 10 sylib φ ran F
12 elpwi x 𝒫 x
13 inundif x ran F x ran F = x
14 13 fveq2i vol * x ran F x ran F = vol * x
15 inss1 x ran F x
16 simp2 φ x vol * x x
17 15 16 sstrid φ x vol * x x ran F
18 ovolsscl x ran F x x vol * x vol * x ran F
19 15 18 mp3an1 x vol * x vol * x ran F
20 19 3adant1 φ x vol * x vol * x ran F
21 difss x ran F x
22 21 16 sstrid φ x vol * x x ran F
23 ovolsscl x ran F x x vol * x vol * x ran F
24 21 23 mp3an1 x vol * x vol * x ran F
25 24 3adant1 φ x vol * x vol * x ran F
26 ovolun x ran F vol * x ran F x ran F vol * x ran F vol * x ran F x ran F vol * x ran F + vol * x ran F
27 17 20 22 25 26 syl22anc φ x vol * x vol * x ran F x ran F vol * x ran F + vol * x ran F
28 14 27 eqbrtrrid φ x vol * x vol * x vol * x ran F + vol * x ran F
29 20 rexrd φ x vol * x vol * x ran F *
30 nnuz = 1
31 1zzd φ x vol * x 1
32 fveq2 n = k F n = F k
33 32 ineq2d n = k x F n = x F k
34 33 fveq2d n = k vol * x F n = vol * x F k
35 fvex vol * x F k V
36 34 3 35 fvmpt k H k = vol * x F k
37 36 adantl φ x vol * x k H k = vol * x F k
38 inss1 x F k x
39 ovolsscl x F k x x vol * x vol * x F k
40 38 39 mp3an1 x vol * x vol * x F k
41 40 3adant1 φ x vol * x vol * x F k
42 41 adantr φ x vol * x k vol * x F k
43 37 42 eqeltrd φ x vol * x k H k
44 30 31 43 serfre φ x vol * x seq 1 + H :
45 44 frnd φ x vol * x ran seq 1 + H
46 ressxr *
47 45 46 sstrdi φ x vol * x ran seq 1 + H *
48 supxrcl ran seq 1 + H * sup ran seq 1 + H * < *
49 47 48 syl φ x vol * x sup ran seq 1 + H * < *
50 simp3 φ x vol * x vol * x
51 50 25 resubcld φ x vol * x vol * x vol * x ran F
52 51 rexrd φ x vol * x vol * x vol * x ran F *
53 iunin2 n x F n = x n F n
54 ffn F : dom vol F Fn
55 fniunfv F Fn n F n = ran F
56 1 54 55 3syl φ n F n = ran F
57 56 3ad2ant1 φ x vol * x n F n = ran F
58 57 ineq2d φ x vol * x x n F n = x ran F
59 53 58 eqtrid φ x vol * x n x F n = x ran F
60 59 fveq2d φ x vol * x vol * n x F n = vol * x ran F
61 eqid seq 1 + H = seq 1 + H
62 inss1 x F n x
63 62 16 sstrid φ x vol * x x F n
64 63 adantr φ x vol * x n x F n
65 ovolsscl x F n x x vol * x vol * x F n
66 62 65 mp3an1 x vol * x vol * x F n
67 66 3adant1 φ x vol * x vol * x F n
68 67 adantr φ x vol * x n vol * x F n
69 61 3 64 68 ovoliun φ x vol * x vol * n x F n sup ran seq 1 + H * <
70 60 69 eqbrtrrd φ x vol * x vol * x ran F sup ran seq 1 + H * <
71 1 3ad2ant1 φ x vol * x F : dom vol
72 2 3ad2ant1 φ x vol * x Disj i F i
73 71 72 3 16 50 voliunlem1 φ x vol * x k seq 1 + H k + vol * x ran F vol * x
74 44 ffvelrnda φ x vol * x k seq 1 + H k
75 25 adantr φ x vol * x k vol * x ran F
76 simpl3 φ x vol * x k vol * x
77 leaddsub seq 1 + H k vol * x ran F vol * x seq 1 + H k + vol * x ran F vol * x seq 1 + H k vol * x vol * x ran F
78 74 75 76 77 syl3anc φ x vol * x k seq 1 + H k + vol * x ran F vol * x seq 1 + H k vol * x vol * x ran F
79 73 78 mpbid φ x vol * x k seq 1 + H k vol * x vol * x ran F
80 79 ralrimiva φ x vol * x k seq 1 + H k vol * x vol * x ran F
81 ffn seq 1 + H : seq 1 + H Fn
82 breq1 z = seq 1 + H k z vol * x vol * x ran F seq 1 + H k vol * x vol * x ran F
83 82 ralrn seq 1 + H Fn z ran seq 1 + H z vol * x vol * x ran F k seq 1 + H k vol * x vol * x ran F
84 44 81 83 3syl φ x vol * x z ran seq 1 + H z vol * x vol * x ran F k seq 1 + H k vol * x vol * x ran F
85 80 84 mpbird φ x vol * x z ran seq 1 + H z vol * x vol * x ran F
86 supxrleub ran seq 1 + H * vol * x vol * x ran F * sup ran seq 1 + H * < vol * x vol * x ran F z ran seq 1 + H z vol * x vol * x ran F
87 47 52 86 syl2anc φ x vol * x sup ran seq 1 + H * < vol * x vol * x ran F z ran seq 1 + H z vol * x vol * x ran F
88 85 87 mpbird φ x vol * x sup ran seq 1 + H * < vol * x vol * x ran F
89 29 49 52 70 88 xrletrd φ x vol * x vol * x ran F vol * x vol * x ran F
90 leaddsub vol * x ran F vol * x ran F vol * x vol * x ran F + vol * x ran F vol * x vol * x ran F vol * x vol * x ran F
91 20 25 50 90 syl3anc φ x vol * x vol * x ran F + vol * x ran F vol * x vol * x ran F vol * x vol * x ran F
92 89 91 mpbird φ x vol * x vol * x ran F + vol * x ran F vol * x
93 20 25 readdcld φ x vol * x vol * x ran F + vol * x ran F
94 50 93 letri3d φ x vol * x vol * x = vol * x ran F + vol * x ran F vol * x vol * x ran F + vol * x ran F vol * x ran F + vol * x ran F vol * x
95 28 92 94 mpbir2and φ x vol * x vol * x = vol * x ran F + vol * x ran F
96 95 3expia φ x vol * x vol * x = vol * x ran F + vol * x ran F
97 12 96 sylan2 φ x 𝒫 vol * x vol * x = vol * x ran F + vol * x ran F
98 97 ralrimiva φ x 𝒫 vol * x vol * x = vol * x ran F + vol * x ran F
99 ismbl ran F dom vol ran F x 𝒫 vol * x vol * x = vol * x ran F + vol * x ran F
100 11 98 99 sylanbrc φ ran F dom vol