Database
BASIC REAL AND COMPLEX ANALYSIS
Integrals
Lebesgue measure
voliunlem2
Next ⟩
voliunlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
voliunlem2
Description:
Lemma for
voliun
.
(Contributed by
Mario Carneiro
, 20-Mar-2014)
Ref
Expression
Hypotheses
voliunlem.3
⊢
φ
→
F
:
ℕ
⟶
dom
vol
voliunlem.5
⊢
φ
→
Disj
i
∈
ℕ
F
i
voliunlem.6
⊢
H
=
n
∈
ℕ
⟼
vol
*
x
∩
F
n
Assertion
voliunlem2
⊢
φ
→
⋃
ran
F
∈
dom
vol
Proof
Step
Hyp
Ref
Expression
1
voliunlem.3
⊢
φ
→
F
:
ℕ
⟶
dom
vol
2
voliunlem.5
⊢
φ
→
Disj
i
∈
ℕ
F
i
3
voliunlem.6
⊢
H
=
n
∈
ℕ
⟼
vol
*
x
∩
F
n
4
1
frnd
⊢
φ
→
ran
F
⊆
dom
vol
5
mblss
⊢
x
∈
dom
vol
→
x
⊆
ℝ
6
velpw
⊢
x
∈
𝒫
ℝ
↔
x
⊆
ℝ
7
5
6
sylibr
⊢
x
∈
dom
vol
→
x
∈
𝒫
ℝ
8
7
ssriv
⊢
dom
vol
⊆
𝒫
ℝ
9
4
8
sstrdi
⊢
φ
→
ran
F
⊆
𝒫
ℝ
10
sspwuni
⊢
ran
F
⊆
𝒫
ℝ
↔
⋃
ran
F
⊆
ℝ
11
9
10
sylib
⊢
φ
→
⋃
ran
F
⊆
ℝ
12
elpwi
⊢
x
∈
𝒫
ℝ
→
x
⊆
ℝ
13
inundif
⊢
x
∩
⋃
ran
F
∪
x
∖
⋃
ran
F
=
x
14
13
fveq2i
⊢
vol
*
x
∩
⋃
ran
F
∪
x
∖
⋃
ran
F
=
vol
*
x
15
inss1
⊢
x
∩
⋃
ran
F
⊆
x
16
simp2
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
x
⊆
ℝ
17
15
16
sstrid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
x
∩
⋃
ran
F
⊆
ℝ
18
ovolsscl
⊢
x
∩
⋃
ran
F
⊆
x
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∈
ℝ
19
15
18
mp3an1
⊢
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∈
ℝ
20
19
3adant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∈
ℝ
21
difss
⊢
x
∖
⋃
ran
F
⊆
x
22
21
16
sstrid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
x
∖
⋃
ran
F
⊆
ℝ
23
ovolsscl
⊢
x
∖
⋃
ran
F
⊆
x
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∖
⋃
ran
F
∈
ℝ
24
21
23
mp3an1
⊢
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∖
⋃
ran
F
∈
ℝ
25
24
3adant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∖
⋃
ran
F
∈
ℝ
26
ovolun
⊢
x
∩
⋃
ran
F
⊆
ℝ
∧
vol
*
x
∩
⋃
ran
F
∈
ℝ
∧
x
∖
⋃
ran
F
⊆
ℝ
∧
vol
*
x
∖
⋃
ran
F
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∪
x
∖
⋃
ran
F
≤
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
27
17
20
22
25
26
syl22anc
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∪
x
∖
⋃
ran
F
≤
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
28
14
27
eqbrtrrid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
≤
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
29
20
rexrd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
∈
ℝ
*
30
nnuz
⊢
ℕ
=
ℤ
≥
1
31
1zzd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
1
∈
ℤ
32
fveq2
⊢
n
=
k
→
F
n
=
F
k
33
32
ineq2d
⊢
n
=
k
→
x
∩
F
n
=
x
∩
F
k
34
33
fveq2d
⊢
n
=
k
→
vol
*
x
∩
F
n
=
vol
*
x
∩
F
k
35
fvex
⊢
vol
*
x
∩
F
k
∈
V
36
34
3
35
fvmpt
⊢
k
∈
ℕ
→
H
k
=
vol
*
x
∩
F
k
37
36
adantl
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
H
k
=
vol
*
x
∩
F
k
38
inss1
⊢
x
∩
F
k
⊆
x
39
ovolsscl
⊢
x
∩
F
k
⊆
x
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
k
∈
ℝ
40
38
39
mp3an1
⊢
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
k
∈
ℝ
41
40
3adant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
k
∈
ℝ
42
41
adantr
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
vol
*
x
∩
F
k
∈
ℝ
43
37
42
eqeltrd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
H
k
∈
ℝ
44
30
31
43
serfre
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
seq
1
+
H
:
ℕ
⟶
ℝ
45
44
frnd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
ran
seq
1
+
H
⊆
ℝ
46
ressxr
⊢
ℝ
⊆
ℝ
*
47
45
46
sstrdi
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
ran
seq
1
+
H
⊆
ℝ
*
48
supxrcl
⊢
ran
seq
1
+
H
⊆
ℝ
*
→
sup
ran
seq
1
+
H
ℝ
*
<
∈
ℝ
*
49
47
48
syl
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
sup
ran
seq
1
+
H
ℝ
*
<
∈
ℝ
*
50
simp3
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∈
ℝ
51
50
25
resubcld
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
−
vol
*
x
∖
⋃
ran
F
∈
ℝ
52
51
rexrd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
−
vol
*
x
∖
⋃
ran
F
∈
ℝ
*
53
iunin2
⊢
⋃
n
∈
ℕ
x
∩
F
n
=
x
∩
⋃
n
∈
ℕ
F
n
54
ffn
⊢
F
:
ℕ
⟶
dom
vol
→
F
Fn
ℕ
55
fniunfv
⊢
F
Fn
ℕ
→
⋃
n
∈
ℕ
F
n
=
⋃
ran
F
56
1
54
55
3syl
⊢
φ
→
⋃
n
∈
ℕ
F
n
=
⋃
ran
F
57
56
3ad2ant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
⋃
n
∈
ℕ
F
n
=
⋃
ran
F
58
57
ineq2d
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
x
∩
⋃
n
∈
ℕ
F
n
=
x
∩
⋃
ran
F
59
53
58
eqtrid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
⋃
n
∈
ℕ
x
∩
F
n
=
x
∩
⋃
ran
F
60
59
fveq2d
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
⋃
n
∈
ℕ
x
∩
F
n
=
vol
*
x
∩
⋃
ran
F
61
eqid
⊢
seq
1
+
H
=
seq
1
+
H
62
inss1
⊢
x
∩
F
n
⊆
x
63
62
16
sstrid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
x
∩
F
n
⊆
ℝ
64
63
adantr
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
n
∈
ℕ
→
x
∩
F
n
⊆
ℝ
65
ovolsscl
⊢
x
∩
F
n
⊆
x
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
n
∈
ℝ
66
62
65
mp3an1
⊢
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
n
∈
ℝ
67
66
3adant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
F
n
∈
ℝ
68
67
adantr
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
n
∈
ℕ
→
vol
*
x
∩
F
n
∈
ℝ
69
61
3
64
68
ovoliun
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
⋃
n
∈
ℕ
x
∩
F
n
≤
sup
ran
seq
1
+
H
ℝ
*
<
70
60
69
eqbrtrrd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
≤
sup
ran
seq
1
+
H
ℝ
*
<
71
1
3ad2ant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
F
:
ℕ
⟶
dom
vol
72
2
3ad2ant1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
Disj
i
∈
ℕ
F
i
73
71
72
3
16
50
voliunlem1
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
seq
1
+
H
k
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
74
44
ffvelcdmda
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
seq
1
+
H
k
∈
ℝ
75
25
adantr
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
vol
*
x
∖
⋃
ran
F
∈
ℝ
76
simpl3
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
vol
*
x
∈
ℝ
77
leaddsub
⊢
seq
1
+
H
k
∈
ℝ
∧
vol
*
x
∖
⋃
ran
F
∈
ℝ
∧
vol
*
x
∈
ℝ
→
seq
1
+
H
k
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
↔
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
78
74
75
76
77
syl3anc
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
seq
1
+
H
k
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
↔
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
79
73
78
mpbid
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
∧
k
∈
ℕ
→
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
80
79
ralrimiva
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
∀
k
∈
ℕ
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
81
ffn
⊢
seq
1
+
H
:
ℕ
⟶
ℝ
→
seq
1
+
H
Fn
ℕ
82
breq1
⊢
z
=
seq
1
+
H
k
→
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
↔
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
83
82
ralrn
⊢
seq
1
+
H
Fn
ℕ
→
∀
z
∈
ran
seq
1
+
H
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
↔
∀
k
∈
ℕ
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
84
44
81
83
3syl
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
∀
z
∈
ran
seq
1
+
H
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
↔
∀
k
∈
ℕ
seq
1
+
H
k
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
85
80
84
mpbird
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
∀
z
∈
ran
seq
1
+
H
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
86
supxrleub
⊢
ran
seq
1
+
H
⊆
ℝ
*
∧
vol
*
x
−
vol
*
x
∖
⋃
ran
F
∈
ℝ
*
→
sup
ran
seq
1
+
H
ℝ
*
<
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
↔
∀
z
∈
ran
seq
1
+
H
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
87
47
52
86
syl2anc
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
sup
ran
seq
1
+
H
ℝ
*
<
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
↔
∀
z
∈
ran
seq
1
+
H
z
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
88
85
87
mpbird
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
sup
ran
seq
1
+
H
ℝ
*
<
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
89
29
49
52
70
88
xrletrd
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
90
leaddsub
⊢
vol
*
x
∩
⋃
ran
F
∈
ℝ
∧
vol
*
x
∖
⋃
ran
F
∈
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
↔
vol
*
x
∩
⋃
ran
F
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
91
20
25
50
90
syl3anc
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
↔
vol
*
x
∩
⋃
ran
F
≤
vol
*
x
−
vol
*
x
∖
⋃
ran
F
92
89
91
mpbird
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
93
20
25
readdcld
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
∈
ℝ
94
50
93
letri3d
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
↔
vol
*
x
≤
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
∧
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
≤
vol
*
x
95
28
92
94
mpbir2and
⊢
φ
∧
x
⊆
ℝ
∧
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
96
95
3expia
⊢
φ
∧
x
⊆
ℝ
→
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
97
12
96
sylan2
⊢
φ
∧
x
∈
𝒫
ℝ
→
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
98
97
ralrimiva
⊢
φ
→
∀
x
∈
𝒫
ℝ
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
99
ismbl
⊢
⋃
ran
F
∈
dom
vol
↔
⋃
ran
F
⊆
ℝ
∧
∀
x
∈
𝒫
ℝ
vol
*
x
∈
ℝ
→
vol
*
x
=
vol
*
x
∩
⋃
ran
F
+
vol
*
x
∖
⋃
ran
F
100
11
98
99
sylanbrc
⊢
φ
→
⋃
ran
F
∈
dom
vol