Metamath Proof Explorer


Theorem vonicclem2

Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicclem2.x φXFin
vonicclem2.a φA:X
vonicclem2.b φB:X
vonicclem2.n φX
vonicclem2.t φkXAkBk
vonicclem2.i I=kXAkBk
vonicclem2.c C=nkXBk+1n
vonicclem2.d D=nkXAkCnk
Assertion vonicclem2 φvolnXI=kXBkAk

Proof

Step Hyp Ref Expression
1 vonicclem2.x φXFin
2 vonicclem2.a φA:X
3 vonicclem2.b φB:X
4 vonicclem2.n φX
5 vonicclem2.t φkXAkBk
6 vonicclem2.i I=kXAkBk
7 vonicclem2.c C=nkXBk+1n
8 vonicclem2.d D=nkXAkCnk
9 nfv nφ
10 1 vonmea φvolnXMeas
11 1zzd φ1
12 nnuz =1
13 1 adantr φnXFin
14 eqid domvolnX=domvolnX
15 2 adantr φnA:X
16 3 ffvelcdmda φkXBk
17 16 adantlr φnkXBk
18 nnrecre n1n
19 18 ad2antlr φnkX1n
20 17 19 readdcld φnkXBk+1n
21 20 fmpttd φnkXBk+1n:X
22 7 a1i φC=nkXBk+1n
23 1 mptexd φkXBk+1nV
24 23 adantr φnkXBk+1nV
25 22 24 fvmpt2d φnCn=kXBk+1n
26 25 feq1d φnCn:XkXBk+1n:X
27 21 26 mpbird φnCn:X
28 13 14 15 27 hoimbl φnkXAkCnkdomvolnX
29 28 8 fmptd φD:domvolnX
30 nfv kφn
31 ressxr *
32 2 ffvelcdmda φkXAk
33 31 32 sselid φkXAk*
34 33 adantlr φnkXAk*
35 ovexd φnkXBk+1nV
36 25 35 fvmpt2d φnkXCnk=Bk+1n
37 36 20 eqeltrd φnkXCnk
38 37 rexrd φnkXCnk*
39 15 ffvelcdmda φnkXAk
40 39 leidd φnkXAkAk
41 1red n1
42 nnre nn
43 42 41 readdcld nn+1
44 peano2nn nn+1
45 nnne0 n+1n+10
46 44 45 syl nn+10
47 41 43 46 redivcld n1n+1
48 47 ad2antlr φnkX1n+1
49 42 ltp1d nn<n+1
50 nnrp nn+
51 44 nnrpd nn+1+
52 50 51 ltrecd nn<n+11n+1<1n
53 49 52 mpbid n1n+1<1n
54 47 18 53 ltled n1n+11n
55 54 ad2antlr φnkX1n+11n
56 48 19 17 55 leadd2dd φnkXBk+1n+1Bk+1n
57 oveq2 n=m1n=1m
58 57 oveq2d n=mBk+1n=Bk+1m
59 58 mpteq2dv n=mkXBk+1n=kXBk+1m
60 59 cbvmptv nkXBk+1n=mkXBk+1m
61 7 60 eqtri C=mkXBk+1m
62 oveq2 m=n+11m=1n+1
63 62 oveq2d m=n+1Bk+1m=Bk+1n+1
64 63 mpteq2dv m=n+1kXBk+1m=kXBk+1n+1
65 simpr φnn
66 65 peano2nnd φnn+1
67 13 mptexd φnkXBk+1n+1V
68 61 64 66 67 fvmptd3 φnCn+1=kXBk+1n+1
69 ovexd φnkXBk+1n+1V
70 68 69 fvmpt2d φnkXCn+1k=Bk+1n+1
71 70 36 breq12d φnkXCn+1kCnkBk+1n+1Bk+1n
72 56 71 mpbird φnkXCn+1kCnk
73 icossico Ak*Cnk*AkAkCn+1kCnkAkCn+1kAkCnk
74 34 38 40 72 73 syl22anc φnkXAkCn+1kAkCnk
75 30 74 ixpssixp φnkXAkCn+1kkXAkCnk
76 fveq2 n=mCn=Cm
77 76 fveq1d n=mCnk=Cmk
78 77 oveq2d n=mAkCnk=AkCmk
79 78 ixpeq2dv n=mkXAkCnk=kXAkCmk
80 79 cbvmptv nkXAkCnk=mkXAkCmk
81 8 80 eqtri D=mkXAkCmk
82 fveq2 m=n+1Cm=Cn+1
83 82 fveq1d m=n+1Cmk=Cn+1k
84 83 oveq2d m=n+1AkCmk=AkCn+1k
85 84 ixpeq2dv m=n+1kXAkCmk=kXAkCn+1k
86 ovex AkCn+1kV
87 86 rgenw kXAkCn+1kV
88 ixpexg kXAkCn+1kVkXAkCn+1kV
89 87 88 ax-mp kXAkCn+1kV
90 89 a1i φnkXAkCn+1kV
91 81 85 66 90 fvmptd3 φnDn+1=kXAkCn+1k
92 8 a1i φD=nkXAkCnk
93 28 elexd φnkXAkCnkV
94 92 93 fvmpt2d φnDn=kXAkCnk
95 91 94 sseq12d φnDn+1DnkXAkCn+1kkXAkCnk
96 75 95 mpbird φnDn+1Dn
97 1nn 1
98 97 12 eleqtri 11
99 98 a1i φ11
100 fveq2 n=1Cn=C1
101 100 fveq1d n=1Cnk=C1k
102 101 oveq2d n=1AkCnk=AkC1k
103 102 ixpeq2dv n=1kXAkCnk=kXAkC1k
104 97 a1i φ1
105 ovex AkC1kV
106 105 rgenw kXAkC1kV
107 ixpexg kXAkC1kVkXAkC1kV
108 106 107 ax-mp kXAkC1kV
109 108 a1i φkXAkC1kV
110 8 103 104 109 fvmptd3 φD1=kXAkC1k
111 110 fveq2d φvolnXD1=volnXkXAkC1k
112 nfv kφ
113 simpl φkXφ
114 97 a1i φkX1
115 simpr φkXkX
116 97 elexi 1V
117 eleq1 n=1n1
118 117 anbi2d n=1φnφ1
119 118 anbi1d n=1φnkXφ1kX
120 101 eleq1d n=1CnkC1k
121 119 120 imbi12d n=1φnkXCnkφ1kXC1k
122 116 121 37 vtocl φ1kXC1k
123 113 114 115 122 syl21anc φkXC1k
124 112 1 32 123 vonhoire φvolnXkXAkC1k
125 111 124 eqeltrd φvolnXD1
126 eqid nvolnXDn=nvolnXDn
127 9 10 11 12 29 96 99 125 126 meaiininc φnvolnXDnvolnXnDn
128 112 32 16 iinhoiicc φnkXAkBk+1n=kXAkBk
129 36 oveq2d φnkXAkCnk=AkBk+1n
130 129 ixpeq2dva φnkXAkCnk=kXAkBk+1n
131 94 130 eqtrd φnDn=kXAkBk+1n
132 131 iineq2dv φnDn=nkXAkBk+1n
133 6 a1i φI=kXAkBk
134 128 132 133 3eqtr4d φnDn=I
135 134 eqcomd φI=nDn
136 135 fveq2d φvolnXI=volnXnDn
137 136 eqcomd φvolnXnDn=volnXI
138 127 137 breqtrd φnvolnXDnvolnXI
139 2fveq3 n=mvolnXDn=volnXDm
140 139 cbvmptv nvolnXDn=mvolnXDm
141 140 a1i φnvolnXDn=mvolnXDm
142 140 eqcomi mvolnXDm=nvolnXDn
143 1 2 3 4 5 7 8 142 vonicclem1 φmvolnXDmkXBkAk
144 141 143 eqbrtrd φnvolnXDnkXBkAk
145 climuni nvolnXDnvolnXInvolnXDnkXBkAkvolnXI=kXBkAk
146 138 144 145 syl2anc φvolnXI=kXBkAk