Metamath Proof Explorer


Theorem vonicclem2

Description: The n-dimensional Lebesgue measure of closed intervals. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicclem2.x φ X Fin
vonicclem2.a φ A : X
vonicclem2.b φ B : X
vonicclem2.n φ X
vonicclem2.t φ k X A k B k
vonicclem2.i I = k X A k B k
vonicclem2.c C = n k X B k + 1 n
vonicclem2.d D = n k X A k C n k
Assertion vonicclem2 φ voln X I = k X B k A k

Proof

Step Hyp Ref Expression
1 vonicclem2.x φ X Fin
2 vonicclem2.a φ A : X
3 vonicclem2.b φ B : X
4 vonicclem2.n φ X
5 vonicclem2.t φ k X A k B k
6 vonicclem2.i I = k X A k B k
7 vonicclem2.c C = n k X B k + 1 n
8 vonicclem2.d D = n k X A k C n k
9 nfv n φ
10 1 vonmea φ voln X Meas
11 1zzd φ 1
12 nnuz = 1
13 1 adantr φ n X Fin
14 eqid dom voln X = dom voln X
15 2 adantr φ n A : X
16 3 ffvelrnda φ k X B k
17 16 adantlr φ n k X B k
18 nnrecre n 1 n
19 18 ad2antlr φ n k X 1 n
20 17 19 readdcld φ n k X B k + 1 n
21 20 fmpttd φ n k X B k + 1 n : X
22 7 a1i φ C = n k X B k + 1 n
23 1 mptexd φ k X B k + 1 n V
24 23 adantr φ n k X B k + 1 n V
25 22 24 fvmpt2d φ n C n = k X B k + 1 n
26 25 feq1d φ n C n : X k X B k + 1 n : X
27 21 26 mpbird φ n C n : X
28 13 14 15 27 hoimbl φ n k X A k C n k dom voln X
29 28 8 fmptd φ D : dom voln X
30 nfv k φ n
31 ressxr *
32 2 ffvelrnda φ k X A k
33 31 32 sselid φ k X A k *
34 33 adantlr φ n k X A k *
35 ovexd φ n k X B k + 1 n V
36 25 35 fvmpt2d φ n k X C n k = B k + 1 n
37 36 20 eqeltrd φ n k X C n k
38 37 rexrd φ n k X C n k *
39 15 ffvelrnda φ n k X A k
40 39 leidd φ n k X A k A k
41 1red n 1
42 nnre n n
43 42 41 readdcld n n + 1
44 peano2nn n n + 1
45 nnne0 n + 1 n + 1 0
46 44 45 syl n n + 1 0
47 41 43 46 redivcld n 1 n + 1
48 47 ad2antlr φ n k X 1 n + 1
49 42 ltp1d n n < n + 1
50 nnrp n n +
51 44 nnrpd n n + 1 +
52 50 51 ltrecd n n < n + 1 1 n + 1 < 1 n
53 49 52 mpbid n 1 n + 1 < 1 n
54 47 18 53 ltled n 1 n + 1 1 n
55 54 ad2antlr φ n k X 1 n + 1 1 n
56 48 19 17 55 leadd2dd φ n k X B k + 1 n + 1 B k + 1 n
57 oveq2 n = m 1 n = 1 m
58 57 oveq2d n = m B k + 1 n = B k + 1 m
59 58 mpteq2dv n = m k X B k + 1 n = k X B k + 1 m
60 59 cbvmptv n k X B k + 1 n = m k X B k + 1 m
61 7 60 eqtri C = m k X B k + 1 m
62 oveq2 m = n + 1 1 m = 1 n + 1
63 62 oveq2d m = n + 1 B k + 1 m = B k + 1 n + 1
64 63 mpteq2dv m = n + 1 k X B k + 1 m = k X B k + 1 n + 1
65 simpr φ n n
66 65 peano2nnd φ n n + 1
67 13 mptexd φ n k X B k + 1 n + 1 V
68 61 64 66 67 fvmptd3 φ n C n + 1 = k X B k + 1 n + 1
69 ovexd φ n k X B k + 1 n + 1 V
70 68 69 fvmpt2d φ n k X C n + 1 k = B k + 1 n + 1
71 70 36 breq12d φ n k X C n + 1 k C n k B k + 1 n + 1 B k + 1 n
72 56 71 mpbird φ n k X C n + 1 k C n k
73 icossico A k * C n k * A k A k C n + 1 k C n k A k C n + 1 k A k C n k
74 34 38 40 72 73 syl22anc φ n k X A k C n + 1 k A k C n k
75 30 74 ixpssixp φ n k X A k C n + 1 k k X A k C n k
76 fveq2 n = m C n = C m
77 76 fveq1d n = m C n k = C m k
78 77 oveq2d n = m A k C n k = A k C m k
79 78 ixpeq2dv n = m k X A k C n k = k X A k C m k
80 79 cbvmptv n k X A k C n k = m k X A k C m k
81 8 80 eqtri D = m k X A k C m k
82 fveq2 m = n + 1 C m = C n + 1
83 82 fveq1d m = n + 1 C m k = C n + 1 k
84 83 oveq2d m = n + 1 A k C m k = A k C n + 1 k
85 84 ixpeq2dv m = n + 1 k X A k C m k = k X A k C n + 1 k
86 ovex A k C n + 1 k V
87 86 rgenw k X A k C n + 1 k V
88 ixpexg k X A k C n + 1 k V k X A k C n + 1 k V
89 87 88 ax-mp k X A k C n + 1 k V
90 89 a1i φ n k X A k C n + 1 k V
91 81 85 66 90 fvmptd3 φ n D n + 1 = k X A k C n + 1 k
92 8 a1i φ D = n k X A k C n k
93 28 elexd φ n k X A k C n k V
94 92 93 fvmpt2d φ n D n = k X A k C n k
95 91 94 sseq12d φ n D n + 1 D n k X A k C n + 1 k k X A k C n k
96 75 95 mpbird φ n D n + 1 D n
97 1nn 1
98 97 12 eleqtri 1 1
99 98 a1i φ 1 1
100 fveq2 n = 1 C n = C 1
101 100 fveq1d n = 1 C n k = C 1 k
102 101 oveq2d n = 1 A k C n k = A k C 1 k
103 102 ixpeq2dv n = 1 k X A k C n k = k X A k C 1 k
104 97 a1i φ 1
105 ovex A k C 1 k V
106 105 rgenw k X A k C 1 k V
107 ixpexg k X A k C 1 k V k X A k C 1 k V
108 106 107 ax-mp k X A k C 1 k V
109 108 a1i φ k X A k C 1 k V
110 8 103 104 109 fvmptd3 φ D 1 = k X A k C 1 k
111 110 fveq2d φ voln X D 1 = voln X k X A k C 1 k
112 nfv k φ
113 simpl φ k X φ
114 97 a1i φ k X 1
115 simpr φ k X k X
116 97 elexi 1 V
117 eleq1 n = 1 n 1
118 117 anbi2d n = 1 φ n φ 1
119 118 anbi1d n = 1 φ n k X φ 1 k X
120 101 eleq1d n = 1 C n k C 1 k
121 119 120 imbi12d n = 1 φ n k X C n k φ 1 k X C 1 k
122 116 121 37 vtocl φ 1 k X C 1 k
123 113 114 115 122 syl21anc φ k X C 1 k
124 112 1 32 123 vonhoire φ voln X k X A k C 1 k
125 111 124 eqeltrd φ voln X D 1
126 eqid n voln X D n = n voln X D n
127 9 10 11 12 29 96 99 125 126 meaiininc φ n voln X D n voln X n D n
128 112 32 16 iinhoiicc φ n k X A k B k + 1 n = k X A k B k
129 36 oveq2d φ n k X A k C n k = A k B k + 1 n
130 129 ixpeq2dva φ n k X A k C n k = k X A k B k + 1 n
131 94 130 eqtrd φ n D n = k X A k B k + 1 n
132 131 iineq2dv φ n D n = n k X A k B k + 1 n
133 6 a1i φ I = k X A k B k
134 128 132 133 3eqtr4d φ n D n = I
135 134 eqcomd φ I = n D n
136 135 fveq2d φ voln X I = voln X n D n
137 136 eqcomd φ voln X n D n = voln X I
138 127 137 breqtrd φ n voln X D n voln X I
139 2fveq3 n = m voln X D n = voln X D m
140 139 cbvmptv n voln X D n = m voln X D m
141 140 a1i φ n voln X D n = m voln X D m
142 140 eqcomi m voln X D m = n voln X D n
143 1 2 3 4 5 7 8 142 vonicclem1 φ m voln X D m k X B k A k
144 141 143 eqbrtrd φ n voln X D n k X B k A k
145 climuni n voln X D n voln X I n voln X D n k X B k A k voln X I = k X B k A k
146 138 144 145 syl2anc φ voln X I = k X B k A k