Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Wallis' product for π
wallispilem3
Next ⟩
wallispilem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
wallispilem3
Description:
I maps to real values.
(Contributed by
Glauco Siliprandi
, 29-Jun-2017)
Ref
Expression
Hypothesis
wallispilem3.1
π
⊢
I
=
n
∈
ℕ
0
⟼
∫
0
π
sin
x
n
d
x
Assertion
wallispilem3
⊢
N
∈
ℕ
0
→
I
N
∈
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
wallispilem3.1
π
⊢
I
=
n
∈
ℕ
0
⟼
∫
0
π
sin
x
n
d
x
2
breq2
⊢
w
=
0
→
m
≤
w
↔
m
≤
0
3
2
imbi1d
⊢
w
=
0
→
m
≤
w
→
I
m
∈
ℝ
+
↔
m
≤
0
→
I
m
∈
ℝ
+
4
3
ralbidv
⊢
w
=
0
→
∀
m
∈
ℕ
0
m
≤
w
→
I
m
∈
ℝ
+
↔
∀
m
∈
ℕ
0
m
≤
0
→
I
m
∈
ℝ
+
5
breq2
⊢
w
=
y
→
m
≤
w
↔
m
≤
y
6
5
imbi1d
⊢
w
=
y
→
m
≤
w
→
I
m
∈
ℝ
+
↔
m
≤
y
→
I
m
∈
ℝ
+
7
6
ralbidv
⊢
w
=
y
→
∀
m
∈
ℕ
0
m
≤
w
→
I
m
∈
ℝ
+
↔
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
8
breq2
⊢
w
=
y
+
1
→
m
≤
w
↔
m
≤
y
+
1
9
8
imbi1d
⊢
w
=
y
+
1
→
m
≤
w
→
I
m
∈
ℝ
+
↔
m
≤
y
+
1
→
I
m
∈
ℝ
+
10
9
ralbidv
⊢
w
=
y
+
1
→
∀
m
∈
ℕ
0
m
≤
w
→
I
m
∈
ℝ
+
↔
∀
m
∈
ℕ
0
m
≤
y
+
1
→
I
m
∈
ℝ
+
11
breq2
⊢
w
=
N
→
m
≤
w
↔
m
≤
N
12
11
imbi1d
⊢
w
=
N
→
m
≤
w
→
I
m
∈
ℝ
+
↔
m
≤
N
→
I
m
∈
ℝ
+
13
12
ralbidv
⊢
w
=
N
→
∀
m
∈
ℕ
0
m
≤
w
→
I
m
∈
ℝ
+
↔
∀
m
∈
ℕ
0
m
≤
N
→
I
m
∈
ℝ
+
14
simpr
⊢
m
∈
ℕ
0
∧
m
≤
0
→
m
≤
0
15
nn0ge0
⊢
m
∈
ℕ
0
→
0
≤
m
16
15
adantr
⊢
m
∈
ℕ
0
∧
m
≤
0
→
0
≤
m
17
nn0re
⊢
m
∈
ℕ
0
→
m
∈
ℝ
18
17
adantr
⊢
m
∈
ℕ
0
∧
m
≤
0
→
m
∈
ℝ
19
0red
⊢
m
∈
ℕ
0
∧
m
≤
0
→
0
∈
ℝ
20
18
19
letri3d
⊢
m
∈
ℕ
0
∧
m
≤
0
→
m
=
0
↔
m
≤
0
∧
0
≤
m
21
14
16
20
mpbir2and
⊢
m
∈
ℕ
0
∧
m
≤
0
→
m
=
0
22
21
fveq2d
⊢
m
∈
ℕ
0
∧
m
≤
0
→
I
m
=
I
0
23
1
wallispilem2
π
⊢
I
0
=
π
∧
I
1
=
2
∧
m
∈
ℤ
≥
2
→
I
m
=
m
−
1
m
I
m
−
2
24
23
simp1i
π
⊢
I
0
=
π
25
pirp
π
⊢
π
∈
ℝ
+
26
24
25
eqeltri
⊢
I
0
∈
ℝ
+
27
22
26
eqeltrdi
⊢
m
∈
ℕ
0
∧
m
≤
0
→
I
m
∈
ℝ
+
28
27
ex
⊢
m
∈
ℕ
0
→
m
≤
0
→
I
m
∈
ℝ
+
29
28
rgen
⊢
∀
m
∈
ℕ
0
m
≤
0
→
I
m
∈
ℝ
+
30
nfv
⊢
Ⅎ
m
y
∈
ℕ
0
31
nfra1
⊢
Ⅎ
m
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
32
30
31
nfan
⊢
Ⅎ
m
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
33
simpllr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
34
simplr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
∈
ℕ
0
35
rsp
⊢
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
→
m
∈
ℕ
0
→
m
≤
y
→
I
m
∈
ℝ
+
36
33
34
35
sylc
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
→
I
m
∈
ℝ
+
37
fveq2
⊢
m
=
1
→
I
m
=
I
1
38
23
simp2i
⊢
I
1
=
2
39
2rp
⊢
2
∈
ℝ
+
40
38
39
eqeltri
⊢
I
1
∈
ℝ
+
41
37
40
eqeltrdi
⊢
m
=
1
→
I
m
∈
ℝ
+
42
41
a1i
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
=
1
→
I
m
∈
ℝ
+
43
23
simp3i
⊢
m
∈
ℤ
≥
2
→
I
m
=
m
−
1
m
I
m
−
2
44
43
adantl
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
I
m
=
m
−
1
m
I
m
−
2
45
eluz2nn
⊢
m
∈
ℤ
≥
2
→
m
∈
ℕ
46
nnre
⊢
m
∈
ℕ
→
m
∈
ℝ
47
1red
⊢
m
∈
ℕ
→
1
∈
ℝ
48
46
47
resubcld
⊢
m
∈
ℕ
→
m
−
1
∈
ℝ
49
45
48
syl
⊢
m
∈
ℤ
≥
2
→
m
−
1
∈
ℝ
50
1m1e0
⊢
1
−
1
=
0
51
1red
⊢
m
∈
ℤ
≥
2
→
1
∈
ℝ
52
eluzelre
⊢
m
∈
ℤ
≥
2
→
m
∈
ℝ
53
eluz2b2
⊢
m
∈
ℤ
≥
2
↔
m
∈
ℕ
∧
1
<
m
54
53
simprbi
⊢
m
∈
ℤ
≥
2
→
1
<
m
55
51
52
51
54
ltsub1dd
⊢
m
∈
ℤ
≥
2
→
1
−
1
<
m
−
1
56
50
55
eqbrtrrid
⊢
m
∈
ℤ
≥
2
→
0
<
m
−
1
57
49
56
elrpd
⊢
m
∈
ℤ
≥
2
→
m
−
1
∈
ℝ
+
58
45
nnrpd
⊢
m
∈
ℤ
≥
2
→
m
∈
ℝ
+
59
57
58
rpdivcld
⊢
m
∈
ℤ
≥
2
→
m
−
1
m
∈
ℝ
+
60
59
adantl
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
1
m
∈
ℝ
+
61
breq1
⊢
m
=
k
→
m
≤
y
↔
k
≤
y
62
fveq2
⊢
m
=
k
→
I
m
=
I
k
63
62
eleq1d
⊢
m
=
k
→
I
m
∈
ℝ
+
↔
I
k
∈
ℝ
+
64
61
63
imbi12d
⊢
m
=
k
→
m
≤
y
→
I
m
∈
ℝ
+
↔
k
≤
y
→
I
k
∈
ℝ
+
65
64
cbvralvw
⊢
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
↔
∀
k
∈
ℕ
0
k
≤
y
→
I
k
∈
ℝ
+
66
65
biimpi
⊢
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
→
∀
k
∈
ℕ
0
k
≤
y
→
I
k
∈
ℝ
+
67
66
ad3antlr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
∀
k
∈
ℕ
0
k
≤
y
→
I
k
∈
ℝ
+
68
uznn0sub
⊢
m
∈
ℤ
≥
2
→
m
−
2
∈
ℕ
0
69
68
adantl
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
2
∈
ℕ
0
70
67
69
jca
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
∀
k
∈
ℕ
0
k
≤
y
→
I
k
∈
ℝ
+
∧
m
−
2
∈
ℕ
0
71
simplll
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
y
∈
ℕ
0
72
simplr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
=
y
+
1
73
simpr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
∈
ℤ
≥
2
74
simp2
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
=
y
+
1
75
74
oveq1d
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
2
=
y
+
1
-
2
76
nn0re
⊢
y
∈
ℕ
0
→
y
∈
ℝ
77
76
3ad2ant1
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
y
∈
ℝ
78
77
recnd
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
y
∈
ℂ
79
df-2
⊢
2
=
1
+
1
80
79
a1i
⊢
y
∈
ℂ
→
2
=
1
+
1
81
80
oveq2d
⊢
y
∈
ℂ
→
y
+
1
-
2
=
y
+
1
-
1
+
1
82
id
⊢
y
∈
ℂ
→
y
∈
ℂ
83
1cnd
⊢
y
∈
ℂ
→
1
∈
ℂ
84
82
83
83
pnpcan2d
⊢
y
∈
ℂ
→
y
+
1
-
1
+
1
=
y
−
1
85
81
84
eqtrd
⊢
y
∈
ℂ
→
y
+
1
-
2
=
y
−
1
86
78
85
syl
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
y
+
1
-
2
=
y
−
1
87
75
86
eqtrd
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
2
=
y
−
1
88
77
lem1d
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
y
−
1
≤
y
89
87
88
eqbrtrd
⊢
y
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
2
≤
y
90
71
72
73
89
syl3anc
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
2
≤
y
91
breq1
⊢
k
=
m
−
2
→
k
≤
y
↔
m
−
2
≤
y
92
fveq2
⊢
k
=
m
−
2
→
I
k
=
I
m
−
2
93
92
eleq1d
⊢
k
=
m
−
2
→
I
k
∈
ℝ
+
↔
I
m
−
2
∈
ℝ
+
94
91
93
imbi12d
⊢
k
=
m
−
2
→
k
≤
y
→
I
k
∈
ℝ
+
↔
m
−
2
≤
y
→
I
m
−
2
∈
ℝ
+
95
94
rspccva
⊢
∀
k
∈
ℕ
0
k
≤
y
→
I
k
∈
ℝ
+
∧
m
−
2
∈
ℕ
0
→
m
−
2
≤
y
→
I
m
−
2
∈
ℝ
+
96
70
90
95
sylc
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
I
m
−
2
∈
ℝ
+
97
60
96
rpmulcld
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
m
−
1
m
I
m
−
2
∈
ℝ
+
98
44
97
eqeltrd
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
I
m
∈
ℝ
+
99
98
adantllr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
∧
m
∈
ℤ
≥
2
→
I
m
∈
ℝ
+
100
99
ex
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
∈
ℤ
≥
2
→
I
m
∈
ℝ
+
101
simplll
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
y
∈
ℕ
0
102
simplr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
∈
ℕ
0
103
simpr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
=
y
+
1
104
simp3
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
=
y
+
1
105
nn0p1nn
⊢
y
∈
ℕ
0
→
y
+
1
∈
ℕ
106
105
3ad2ant1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
y
+
1
∈
ℕ
107
104
106
eqeltrd
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
∈
ℕ
108
elnnuz
⊢
m
∈
ℕ
↔
m
∈
ℤ
≥
1
109
107
108
sylib
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
∈
ℤ
≥
1
110
uzp1
⊢
m
∈
ℤ
≥
1
→
m
=
1
∨
m
∈
ℤ
≥
1
+
1
111
1p1e2
⊢
1
+
1
=
2
112
111
fveq2i
⊢
ℤ
≥
1
+
1
=
ℤ
≥
2
113
112
eleq2i
⊢
m
∈
ℤ
≥
1
+
1
↔
m
∈
ℤ
≥
2
114
113
orbi2i
⊢
m
=
1
∨
m
∈
ℤ
≥
1
+
1
↔
m
=
1
∨
m
∈
ℤ
≥
2
115
110
114
sylib
⊢
m
∈
ℤ
≥
1
→
m
=
1
∨
m
∈
ℤ
≥
2
116
109
115
syl
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
=
1
∨
m
∈
ℤ
≥
2
117
101
102
103
116
syl3anc
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
m
=
1
∨
m
∈
ℤ
≥
2
118
42
100
117
mpjaod
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
=
y
+
1
→
I
m
∈
ℝ
+
119
118
adantlr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
=
y
+
1
→
I
m
∈
ℝ
+
120
119
ex
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
=
y
+
1
→
I
m
∈
ℝ
+
121
simplll
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
y
∈
ℕ
0
122
simpr
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
+
1
123
simpl1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
<
y
+
1
→
y
∈
ℕ
0
124
simpl2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
<
y
+
1
→
m
∈
ℕ
0
125
simpr
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
<
y
+
1
→
m
<
y
+
1
126
simpr
⊢
y
∈
ℕ
0
∧
m
=
0
→
m
=
0
127
nn0ge0
⊢
y
∈
ℕ
0
→
0
≤
y
128
127
adantr
⊢
y
∈
ℕ
0
∧
m
=
0
→
0
≤
y
129
126
128
eqbrtrd
⊢
y
∈
ℕ
0
∧
m
=
0
→
m
≤
y
130
129
3ad2antl1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
∧
m
=
0
→
m
≤
y
131
simpl1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
∧
m
∈
ℕ
→
y
∈
ℕ
0
132
simpr
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
∧
m
∈
ℕ
→
m
∈
ℕ
133
simpl3
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
∧
m
∈
ℕ
→
m
<
y
+
1
134
simp3
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
<
y
+
1
135
simp2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
∈
ℕ
136
simp1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
y
∈
ℕ
0
137
0red
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
0
∈
ℝ
138
48
3ad2ant2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
−
1
∈
ℝ
139
76
3ad2ant1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
y
∈
ℝ
140
nnm1ge0
⊢
m
∈
ℕ
→
0
≤
m
−
1
141
140
3ad2ant2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
0
≤
m
−
1
142
46
3ad2ant2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
∈
ℝ
143
1red
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
1
∈
ℝ
144
142
143
139
ltsubaddd
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
−
1
<
y
↔
m
<
y
+
1
145
134
144
mpbird
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
−
1
<
y
146
137
138
139
141
145
lelttrd
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
0
<
y
147
146
gt0ne0d
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
y
≠
0
148
elnnne0
⊢
y
∈
ℕ
↔
y
∈
ℕ
0
∧
y
≠
0
149
136
147
148
sylanbrc
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
y
∈
ℕ
150
nnleltp1
⊢
m
∈
ℕ
∧
y
∈
ℕ
→
m
≤
y
↔
m
<
y
+
1
151
135
149
150
syl2anc
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
≤
y
↔
m
<
y
+
1
152
134
151
mpbird
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
∧
m
<
y
+
1
→
m
≤
y
153
131
132
133
152
syl3anc
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
∧
m
∈
ℕ
→
m
≤
y
154
elnn0
⊢
m
∈
ℕ
0
↔
m
∈
ℕ
∨
m
=
0
155
154
biimpi
⊢
m
∈
ℕ
0
→
m
∈
ℕ
∨
m
=
0
156
155
orcomd
⊢
m
∈
ℕ
0
→
m
=
0
∨
m
∈
ℕ
157
156
3ad2ant2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
→
m
=
0
∨
m
∈
ℕ
158
130
153
157
mpjaodan
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
→
m
≤
y
159
158
orcd
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
<
y
+
1
→
m
≤
y
∨
m
=
y
+
1
160
123
124
125
159
syl3anc
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
<
y
+
1
→
m
≤
y
∨
m
=
y
+
1
161
simpr
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
=
y
+
1
→
m
=
y
+
1
162
161
olcd
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
∧
m
=
y
+
1
→
m
≤
y
∨
m
=
y
+
1
163
simp3
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
+
1
164
17
3ad2ant2
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
∈
ℝ
165
76
3ad2ant1
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
y
∈
ℝ
166
1red
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
1
∈
ℝ
167
165
166
readdcld
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
y
+
1
∈
ℝ
168
164
167
leloed
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
+
1
↔
m
<
y
+
1
∨
m
=
y
+
1
169
163
168
mpbid
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
<
y
+
1
∨
m
=
y
+
1
170
160
162
169
mpjaodan
⊢
y
∈
ℕ
0
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
∨
m
=
y
+
1
171
121
34
122
170
syl3anc
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
m
≤
y
∨
m
=
y
+
1
172
36
120
171
mpjaod
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
∧
m
∈
ℕ
0
∧
m
≤
y
+
1
→
I
m
∈
ℝ
+
173
172
exp31
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
→
m
∈
ℕ
0
→
m
≤
y
+
1
→
I
m
∈
ℝ
+
174
32
173
ralrimi
⊢
y
∈
ℕ
0
∧
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
→
∀
m
∈
ℕ
0
m
≤
y
+
1
→
I
m
∈
ℝ
+
175
174
ex
⊢
y
∈
ℕ
0
→
∀
m
∈
ℕ
0
m
≤
y
→
I
m
∈
ℝ
+
→
∀
m
∈
ℕ
0
m
≤
y
+
1
→
I
m
∈
ℝ
+
176
4
7
10
13
29
175
nn0ind
⊢
N
∈
ℕ
0
→
∀
m
∈
ℕ
0
m
≤
N
→
I
m
∈
ℝ
+
177
176
ancri
⊢
N
∈
ℕ
0
→
∀
m
∈
ℕ
0
m
≤
N
→
I
m
∈
ℝ
+
∧
N
∈
ℕ
0
178
nn0re
⊢
N
∈
ℕ
0
→
N
∈
ℝ
179
178
leidd
⊢
N
∈
ℕ
0
→
N
≤
N
180
breq1
⊢
m
=
N
→
m
≤
N
↔
N
≤
N
181
fveq2
⊢
m
=
N
→
I
m
=
I
N
182
181
eleq1d
⊢
m
=
N
→
I
m
∈
ℝ
+
↔
I
N
∈
ℝ
+
183
180
182
imbi12d
⊢
m
=
N
→
m
≤
N
→
I
m
∈
ℝ
+
↔
N
≤
N
→
I
N
∈
ℝ
+
184
183
rspccva
⊢
∀
m
∈
ℕ
0
m
≤
N
→
I
m
∈
ℝ
+
∧
N
∈
ℕ
0
→
N
≤
N
→
I
N
∈
ℝ
+
185
177
179
184
sylc
⊢
N
∈
ℕ
0
→
I
N
∈
ℝ
+