Metamath Proof Explorer


Theorem wallispilem3

Description: I maps to real values. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypothesis wallispilem3.1 I=n00πsinxndx
Assertion wallispilem3 N0IN+

Proof

Step Hyp Ref Expression
1 wallispilem3.1 I=n00πsinxndx
2 breq2 w=0mwm0
3 2 imbi1d w=0mwIm+m0Im+
4 3 ralbidv w=0m0mwIm+m0m0Im+
5 breq2 w=ymwmy
6 5 imbi1d w=ymwIm+myIm+
7 6 ralbidv w=ym0mwIm+m0myIm+
8 breq2 w=y+1mwmy+1
9 8 imbi1d w=y+1mwIm+my+1Im+
10 9 ralbidv w=y+1m0mwIm+m0my+1Im+
11 breq2 w=NmwmN
12 11 imbi1d w=NmwIm+mNIm+
13 12 ralbidv w=Nm0mwIm+m0mNIm+
14 simpr m0m0m0
15 nn0ge0 m00m
16 15 adantr m0m00m
17 nn0re m0m
18 17 adantr m0m0m
19 0red m0m00
20 18 19 letri3d m0m0m=0m00m
21 14 16 20 mpbir2and m0m0m=0
22 21 fveq2d m0m0Im=I0
23 1 wallispilem2 I0=πI1=2m2Im=m1mIm2
24 23 simp1i I0=π
25 pirp π+
26 24 25 eqeltri I0+
27 22 26 eqeltrdi m0m0Im+
28 27 ex m0m0Im+
29 28 rgen m0m0Im+
30 nfv my0
31 nfra1 mm0myIm+
32 30 31 nfan my0m0myIm+
33 simpllr y0m0myIm+m0my+1m0myIm+
34 simplr y0m0myIm+m0my+1m0
35 rsp m0myIm+m0myIm+
36 33 34 35 sylc y0m0myIm+m0my+1myIm+
37 fveq2 m=1Im=I1
38 23 simp2i I1=2
39 2rp 2+
40 38 39 eqeltri I1+
41 37 40 eqeltrdi m=1Im+
42 41 a1i y0m0myIm+m0m=y+1m=1Im+
43 23 simp3i m2Im=m1mIm2
44 43 adantl y0m0myIm+m=y+1m2Im=m1mIm2
45 eluz2nn m2m
46 nnre mm
47 1red m1
48 46 47 resubcld mm1
49 45 48 syl m2m1
50 1m1e0 11=0
51 1red m21
52 eluzelre m2m
53 eluz2b2 m2m1<m
54 53 simprbi m21<m
55 51 52 51 54 ltsub1dd m211<m1
56 50 55 eqbrtrrid m20<m1
57 49 56 elrpd m2m1+
58 45 nnrpd m2m+
59 57 58 rpdivcld m2m1m+
60 59 adantl y0m0myIm+m=y+1m2m1m+
61 breq1 m=kmyky
62 fveq2 m=kIm=Ik
63 62 eleq1d m=kIm+Ik+
64 61 63 imbi12d m=kmyIm+kyIk+
65 64 cbvralvw m0myIm+k0kyIk+
66 65 biimpi m0myIm+k0kyIk+
67 66 ad3antlr y0m0myIm+m=y+1m2k0kyIk+
68 uznn0sub m2m20
69 68 adantl y0m0myIm+m=y+1m2m20
70 67 69 jca y0m0myIm+m=y+1m2k0kyIk+m20
71 simplll y0m0myIm+m=y+1m2y0
72 simplr y0m0myIm+m=y+1m2m=y+1
73 simpr y0m0myIm+m=y+1m2m2
74 simp2 y0m=y+1m2m=y+1
75 74 oveq1d y0m=y+1m2m2=y+1-2
76 nn0re y0y
77 76 3ad2ant1 y0m=y+1m2y
78 77 recnd y0m=y+1m2y
79 df-2 2=1+1
80 79 a1i y2=1+1
81 80 oveq2d yy+1-2=y+1-1+1
82 id yy
83 1cnd y1
84 82 83 83 pnpcan2d yy+1-1+1=y1
85 81 84 eqtrd yy+1-2=y1
86 78 85 syl y0m=y+1m2y+1-2=y1
87 75 86 eqtrd y0m=y+1m2m2=y1
88 77 lem1d y0m=y+1m2y1y
89 87 88 eqbrtrd y0m=y+1m2m2y
90 71 72 73 89 syl3anc y0m0myIm+m=y+1m2m2y
91 breq1 k=m2kym2y
92 fveq2 k=m2Ik=Im2
93 92 eleq1d k=m2Ik+Im2+
94 91 93 imbi12d k=m2kyIk+m2yIm2+
95 94 rspccva k0kyIk+m20m2yIm2+
96 70 90 95 sylc y0m0myIm+m=y+1m2Im2+
97 60 96 rpmulcld y0m0myIm+m=y+1m2m1mIm2+
98 44 97 eqeltrd y0m0myIm+m=y+1m2Im+
99 98 adantllr y0m0myIm+m0m=y+1m2Im+
100 99 ex y0m0myIm+m0m=y+1m2Im+
101 simplll y0m0myIm+m0m=y+1y0
102 simplr y0m0myIm+m0m=y+1m0
103 simpr y0m0myIm+m0m=y+1m=y+1
104 simp3 y0m0m=y+1m=y+1
105 nn0p1nn y0y+1
106 105 3ad2ant1 y0m0m=y+1y+1
107 104 106 eqeltrd y0m0m=y+1m
108 elnnuz mm1
109 107 108 sylib y0m0m=y+1m1
110 uzp1 m1m=1m1+1
111 1p1e2 1+1=2
112 111 fveq2i 1+1=2
113 112 eleq2i m1+1m2
114 113 orbi2i m=1m1+1m=1m2
115 110 114 sylib m1m=1m2
116 109 115 syl y0m0m=y+1m=1m2
117 101 102 103 116 syl3anc y0m0myIm+m0m=y+1m=1m2
118 42 100 117 mpjaod y0m0myIm+m0m=y+1Im+
119 118 adantlr y0m0myIm+m0my+1m=y+1Im+
120 119 ex y0m0myIm+m0my+1m=y+1Im+
121 simplll y0m0myIm+m0my+1y0
122 simpr y0m0myIm+m0my+1my+1
123 simpl1 y0m0my+1m<y+1y0
124 simpl2 y0m0my+1m<y+1m0
125 simpr y0m0my+1m<y+1m<y+1
126 simpr y0m=0m=0
127 nn0ge0 y00y
128 127 adantr y0m=00y
129 126 128 eqbrtrd y0m=0my
130 129 3ad2antl1 y0m0m<y+1m=0my
131 simpl1 y0m0m<y+1my0
132 simpr y0m0m<y+1mm
133 simpl3 y0m0m<y+1mm<y+1
134 simp3 y0mm<y+1m<y+1
135 simp2 y0mm<y+1m
136 simp1 y0mm<y+1y0
137 0red y0mm<y+10
138 48 3ad2ant2 y0mm<y+1m1
139 76 3ad2ant1 y0mm<y+1y
140 nnm1ge0 m0m1
141 140 3ad2ant2 y0mm<y+10m1
142 46 3ad2ant2 y0mm<y+1m
143 1red y0mm<y+11
144 142 143 139 ltsubaddd y0mm<y+1m1<ym<y+1
145 134 144 mpbird y0mm<y+1m1<y
146 137 138 139 141 145 lelttrd y0mm<y+10<y
147 146 gt0ne0d y0mm<y+1y0
148 elnnne0 yy0y0
149 136 147 148 sylanbrc y0mm<y+1y
150 nnleltp1 mymym<y+1
151 135 149 150 syl2anc y0mm<y+1mym<y+1
152 134 151 mpbird y0mm<y+1my
153 131 132 133 152 syl3anc y0m0m<y+1mmy
154 elnn0 m0mm=0
155 154 biimpi m0mm=0
156 155 orcomd m0m=0m
157 156 3ad2ant2 y0m0m<y+1m=0m
158 130 153 157 mpjaodan y0m0m<y+1my
159 158 orcd y0m0m<y+1mym=y+1
160 123 124 125 159 syl3anc y0m0my+1m<y+1mym=y+1
161 simpr y0m0my+1m=y+1m=y+1
162 161 olcd y0m0my+1m=y+1mym=y+1
163 simp3 y0m0my+1my+1
164 17 3ad2ant2 y0m0my+1m
165 76 3ad2ant1 y0m0my+1y
166 1red y0m0my+11
167 165 166 readdcld y0m0my+1y+1
168 164 167 leloed y0m0my+1my+1m<y+1m=y+1
169 163 168 mpbid y0m0my+1m<y+1m=y+1
170 160 162 169 mpjaodan y0m0my+1mym=y+1
171 121 34 122 170 syl3anc y0m0myIm+m0my+1mym=y+1
172 36 120 171 mpjaod y0m0myIm+m0my+1Im+
173 172 exp31 y0m0myIm+m0my+1Im+
174 32 173 ralrimi y0m0myIm+m0my+1Im+
175 174 ex y0m0myIm+m0my+1Im+
176 4 7 10 13 29 175 nn0ind N0m0mNIm+
177 176 ancri N0m0mNIm+N0
178 nn0re N0N
179 178 leidd N0NN
180 breq1 m=NmNNN
181 fveq2 m=NIm=IN
182 181 eleq1d m=NIm+IN+
183 180 182 imbi12d m=NmNIm+NNIN+
184 183 rspccva m0mNIm+N0NNIN+
185 177 179 184 sylc N0IN+