| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xkococn.1 |  | 
						
							| 2 |  | simprr |  | 
						
							| 3 |  | simprl |  | 
						
							| 4 |  | cnco |  | 
						
							| 5 | 2 3 4 | syl2anc |  | 
						
							| 6 | 5 | ralrimivva |  | 
						
							| 7 | 1 | fmpo |  | 
						
							| 8 | 6 7 | sylib |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 | 9 | rnmpo |  | 
						
							| 11 | 10 | eleq2i |  | 
						
							| 12 |  | abid |  | 
						
							| 13 |  | oveq2 |  | 
						
							| 14 | 13 | eleq1d |  | 
						
							| 15 | 14 | rexrab |  | 
						
							| 16 | 11 12 15 | 3bitri |  | 
						
							| 17 | 8 | ad2antrr |  | 
						
							| 18 |  | ffn |  | 
						
							| 19 |  | elpreima |  | 
						
							| 20 | 17 18 19 | 3syl |  | 
						
							| 21 |  | coeq1 |  | 
						
							| 22 |  | coeq2 |  | 
						
							| 23 |  | vex |  | 
						
							| 24 |  | vex |  | 
						
							| 25 | 23 24 | coex |  | 
						
							| 26 | 21 22 1 25 | ovmpo |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 27 | eleq1d |  | 
						
							| 29 |  | imaeq1 |  | 
						
							| 30 | 29 | sseq1d |  | 
						
							| 31 | 30 | elrab |  | 
						
							| 32 | 31 | simprbi |  | 
						
							| 33 |  | simp2 |  | 
						
							| 34 | 33 | ad3antrrr |  | 
						
							| 35 |  | elpwi |  | 
						
							| 36 | 35 | ad2antrl |  | 
						
							| 37 | 36 | ad2antrr |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 | 38 | ad2antrr |  | 
						
							| 40 |  | simplr |  | 
						
							| 41 |  | simprll |  | 
						
							| 42 |  | simprlr |  | 
						
							| 43 |  | simprr |  | 
						
							| 44 | 1 34 37 39 40 41 42 43 | xkococnlem |  | 
						
							| 45 | 44 | expr |  | 
						
							| 46 | 32 45 | syl5 |  | 
						
							| 47 | 28 46 | sylbid |  | 
						
							| 48 | 47 | ralrimivva |  | 
						
							| 49 |  | fveq2 |  | 
						
							| 50 |  | df-ov |  | 
						
							| 51 | 49 50 | eqtr4di |  | 
						
							| 52 | 51 | eleq1d |  | 
						
							| 53 |  | eleq1 |  | 
						
							| 54 | 53 | anbi1d |  | 
						
							| 55 | 54 | rexbidv |  | 
						
							| 56 | 52 55 | imbi12d |  | 
						
							| 57 | 56 | ralxp |  | 
						
							| 58 | 48 57 | sylibr |  | 
						
							| 59 | 58 | r19.21bi |  | 
						
							| 60 | 59 | expimpd |  | 
						
							| 61 | 20 60 | sylbid |  | 
						
							| 62 | 61 | ralrimiv |  | 
						
							| 63 |  | nllytop |  | 
						
							| 64 | 63 | 3ad2ant2 |  | 
						
							| 65 |  | simp3 |  | 
						
							| 66 |  | xkotop |  | 
						
							| 67 | 64 65 66 | syl2anc |  | 
						
							| 68 |  | simp1 |  | 
						
							| 69 |  | xkotop |  | 
						
							| 70 | 68 64 69 | syl2anc |  | 
						
							| 71 |  | txtop |  | 
						
							| 72 | 67 70 71 | syl2anc |  | 
						
							| 73 | 72 | ad2antrr |  | 
						
							| 74 |  | eltop2 |  | 
						
							| 75 | 73 74 | syl |  | 
						
							| 76 | 62 75 | mpbird |  | 
						
							| 77 |  | imaeq2 |  | 
						
							| 78 | 77 | eleq1d |  | 
						
							| 79 | 76 78 | syl5ibrcom |  | 
						
							| 80 | 79 | rexlimdva |  | 
						
							| 81 | 80 | anassrs |  | 
						
							| 82 | 81 | expimpd |  | 
						
							| 83 | 82 | rexlimdva |  | 
						
							| 84 | 16 83 | biimtrid |  | 
						
							| 85 | 84 | ralrimiv |  | 
						
							| 86 |  | eqid |  | 
						
							| 87 | 86 | xkotopon |  | 
						
							| 88 | 64 65 87 | syl2anc |  | 
						
							| 89 |  | eqid |  | 
						
							| 90 | 89 | xkotopon |  | 
						
							| 91 | 68 64 90 | syl2anc |  | 
						
							| 92 |  | txtopon |  | 
						
							| 93 | 88 91 92 | syl2anc |  | 
						
							| 94 |  | ovex |  | 
						
							| 95 | 94 | pwex |  | 
						
							| 96 |  | eqid |  | 
						
							| 97 |  | eqid |  | 
						
							| 98 | 96 97 9 | xkotf |  | 
						
							| 99 |  | frn |  | 
						
							| 100 | 98 99 | ax-mp |  | 
						
							| 101 | 95 100 | ssexi |  | 
						
							| 102 | 101 | a1i |  | 
						
							| 103 | 96 97 9 | xkoval |  | 
						
							| 104 | 103 | 3adant2 |  | 
						
							| 105 |  | eqid |  | 
						
							| 106 | 105 | xkotopon |  | 
						
							| 107 | 106 | 3adant2 |  | 
						
							| 108 | 93 102 104 107 | subbascn |  | 
						
							| 109 | 8 85 108 | mpbir2and |  |