Metamath Proof Explorer


Theorem xkococn

Description: Continuity of the composition operation as a function on continuous function spaces. (Contributed by Mario Carneiro, 20-Mar-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Hypothesis xkococn.1 F=fSCnT,gRCnSfg
Assertion xkococn RTopSN-Locally Comp TTop FT^koS×tS^koRCnT^koR

Proof

Step Hyp Ref Expression
1 xkococn.1 F=fSCnT,gRCnSfg
2 simprr RTopSN-Locally Comp TTop fSCnTgRCnS gRCnS
3 simprl RTopSN-Locally Comp TTop fSCnTgRCnS fSCnT
4 cnco gRCnSfSCnTfgRCnT
5 2 3 4 syl2anc RTopSN-Locally Comp TTop fSCnTgRCnS fgRCnT
6 5 ralrimivva RTopSN-Locally Comp TTop fSCnTgRCnSfgRCnT
7 1 fmpo fSCnTgRCnSfgRCnTF:SCnT×RCnSRCnT
8 6 7 sylib RTopSN-Locally Comp TTop F:SCnT×RCnSRCnT
9 eqid ky𝒫R|R𝑡yComp,vThRCnT|hkv=ky𝒫R|R𝑡yComp,vThRCnT|hkv
10 9 rnmpo ranky𝒫R|R𝑡yComp,vThRCnT|hkv=x|ky𝒫R|R𝑡yCompvTx=hRCnT|hkv
11 10 eleq2i xranky𝒫R|R𝑡yComp,vThRCnT|hkvxx|ky𝒫R|R𝑡yCompvTx=hRCnT|hkv
12 abid xx|ky𝒫R|R𝑡yCompvTx=hRCnT|hkvky𝒫R|R𝑡yCompvTx=hRCnT|hkv
13 oveq2 y=kR𝑡y=R𝑡k
14 13 eleq1d y=kR𝑡yCompR𝑡kComp
15 14 rexrab ky𝒫R|R𝑡yCompvTx=hRCnT|hkvk𝒫RR𝑡kCompvTx=hRCnT|hkv
16 11 12 15 3bitri xranky𝒫R|R𝑡yComp,vThRCnT|hkvk𝒫RR𝑡kCompvTx=hRCnT|hkv
17 8 ad2antrr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT F:SCnT×RCnSRCnT
18 ffn F:SCnT×RCnSRCnTFFnSCnT×RCnS
19 elpreima FFnSCnT×RCnSyF-1hRCnT|hkvySCnT×RCnSFyhRCnT|hkv
20 17 18 19 3syl RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT yF-1hRCnT|hkvySCnT×RCnSFyhRCnT|hkv
21 coeq1 f=afg=ag
22 coeq2 g=bag=ab
23 vex aV
24 vex bV
25 23 24 coex abV
26 21 22 1 25 ovmpo aSCnTbRCnSaFb=ab
27 26 adantl RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnS aFb=ab
28 27 eleq1d RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnS aFbhRCnT|hkvabhRCnT|hkv
29 imaeq1 h=abhk=abk
30 29 sseq1d h=abhkvabkv
31 30 elrab abhRCnT|hkvabRCnTabkv
32 31 simprbi abhRCnT|hkvabkv
33 simp2 RTopSN-Locally Comp TTop SN-Locally Comp
34 33 ad3antrrr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv SN-Locally Comp
35 elpwi k𝒫RkR
36 35 ad2antrl RTopSN-Locally Comp TTop k𝒫RR𝑡kComp kR
37 36 ad2antrr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv kR
38 simprr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp R𝑡kComp
39 38 ad2antrr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv R𝑡kComp
40 simplr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv vT
41 simprll RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv aSCnT
42 simprlr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv bRCnS
43 simprr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv abkv
44 1 34 37 39 40 41 42 43 xkococnlem RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSabkv zT^koS×tS^koRabzzF-1hRCnT|hkv
45 44 expr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnS abkvzT^koS×tS^koRabzzF-1hRCnT|hkv
46 32 45 syl5 RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnS abhRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
47 28 46 sylbid RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnS aFbhRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
48 47 ralrimivva RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT aSCnTbRCnSaFbhRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
49 fveq2 y=abFy=Fab
50 df-ov aFb=Fab
51 49 50 eqtr4di y=abFy=aFb
52 51 eleq1d y=abFyhRCnT|hkvaFbhRCnT|hkv
53 eleq1 y=abyzabz
54 53 anbi1d y=abyzzF-1hRCnT|hkvabzzF-1hRCnT|hkv
55 54 rexbidv y=abzT^koS×tS^koRyzzF-1hRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
56 52 55 imbi12d y=abFyhRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkvaFbhRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
57 56 ralxp ySCnT×RCnSFyhRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkvaSCnTbRCnSaFbhRCnT|hkvzT^koS×tS^koRabzzF-1hRCnT|hkv
58 48 57 sylibr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT ySCnT×RCnSFyhRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
59 58 r19.21bi RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT ySCnT×RCnS FyhRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
60 59 expimpd RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT ySCnT×RCnSFyhRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
61 20 60 sylbid RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT yF-1hRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
62 61 ralrimiv RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT yF-1hRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
63 nllytop SN-Locally Comp STop
64 63 3ad2ant2 RTopSN-Locally Comp TTop STop
65 simp3 RTopSN-Locally Comp TTop TTop
66 xkotop STopTTopT^koSTop
67 64 65 66 syl2anc RTopSN-Locally Comp TTop T^koSTop
68 simp1 RTopSN-Locally Comp TTop RTop
69 xkotop RTopSTopS^koRTop
70 68 64 69 syl2anc RTopSN-Locally Comp TTop S^koRTop
71 txtop T^koSTopS^koRTopT^koS×tS^koRTop
72 67 70 71 syl2anc RTopSN-Locally Comp TTop T^koS×tS^koRTop
73 72 ad2antrr RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT T^koS×tS^koRTop
74 eltop2 T^koS×tS^koRTopF-1hRCnT|hkvT^koS×tS^koRyF-1hRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
75 73 74 syl RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT F-1hRCnT|hkvT^koS×tS^koRyF-1hRCnT|hkvzT^koS×tS^koRyzzF-1hRCnT|hkv
76 62 75 mpbird RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT F-1hRCnT|hkvT^koS×tS^koR
77 imaeq2 x=hRCnT|hkvF-1x=F-1hRCnT|hkv
78 77 eleq1d x=hRCnT|hkvF-1xT^koS×tS^koRF-1hRCnT|hkvT^koS×tS^koR
79 76 78 syl5ibrcom RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vT x=hRCnT|hkvF-1xT^koS×tS^koR
80 79 rexlimdva RTopSN-Locally Comp TTop k𝒫RR𝑡kComp vTx=hRCnT|hkvF-1xT^koS×tS^koR
81 80 anassrs RTopSN-Locally Comp TTop k𝒫R R𝑡kComp vTx=hRCnT|hkvF-1xT^koS×tS^koR
82 81 expimpd RTopSN-Locally Comp TTop k𝒫R R𝑡kCompvTx=hRCnT|hkvF-1xT^koS×tS^koR
83 82 rexlimdva RTopSN-Locally Comp TTop k𝒫RR𝑡kCompvTx=hRCnT|hkvF-1xT^koS×tS^koR
84 16 83 biimtrid RTopSN-Locally Comp TTop xranky𝒫R|R𝑡yComp,vThRCnT|hkvF-1xT^koS×tS^koR
85 84 ralrimiv RTopSN-Locally Comp TTop xranky𝒫R|R𝑡yComp,vThRCnT|hkvF-1xT^koS×tS^koR
86 eqid T^koS=T^koS
87 86 xkotopon STopTTopT^koSTopOnSCnT
88 64 65 87 syl2anc RTopSN-Locally Comp TTop T^koSTopOnSCnT
89 eqid S^koR=S^koR
90 89 xkotopon RTopSTopS^koRTopOnRCnS
91 68 64 90 syl2anc RTopSN-Locally Comp TTop S^koRTopOnRCnS
92 txtopon T^koSTopOnSCnTS^koRTopOnRCnST^koS×tS^koRTopOnSCnT×RCnS
93 88 91 92 syl2anc RTopSN-Locally Comp TTop T^koS×tS^koRTopOnSCnT×RCnS
94 ovex RCnTV
95 94 pwex 𝒫RCnTV
96 eqid R=R
97 eqid y𝒫R|R𝑡yComp=y𝒫R|R𝑡yComp
98 96 97 9 xkotf ky𝒫R|R𝑡yComp,vThRCnT|hkv:y𝒫R|R𝑡yComp×T𝒫RCnT
99 frn ky𝒫R|R𝑡yComp,vThRCnT|hkv:y𝒫R|R𝑡yComp×T𝒫RCnTranky𝒫R|R𝑡yComp,vThRCnT|hkv𝒫RCnT
100 98 99 ax-mp ranky𝒫R|R𝑡yComp,vThRCnT|hkv𝒫RCnT
101 95 100 ssexi ranky𝒫R|R𝑡yComp,vThRCnT|hkvV
102 101 a1i RTopSN-Locally Comp TTop ranky𝒫R|R𝑡yComp,vThRCnT|hkvV
103 96 97 9 xkoval RTopTTopT^koR=topGenfiranky𝒫R|R𝑡yComp,vThRCnT|hkv
104 103 3adant2 RTopSN-Locally Comp TTop T^koR=topGenfiranky𝒫R|R𝑡yComp,vThRCnT|hkv
105 eqid T^koR=T^koR
106 105 xkotopon RTopTTopT^koRTopOnRCnT
107 106 3adant2 RTopSN-Locally Comp TTop T^koRTopOnRCnT
108 93 102 104 107 subbascn RTopSN-Locally Comp TTop FT^koS×tS^koRCnT^koRF:SCnT×RCnSRCnTxranky𝒫R|R𝑡yComp,vThRCnT|hkvF-1xT^koS×tS^koR
109 8 85 108 mpbir2and RTopSN-Locally Comp TTop FT^koS×tS^koRCnT^koR