Metamath Proof Explorer


Theorem xrge0slmod

Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses xrge0slmod.1 G=𝑠*𝑠0+∞
xrge0slmod.2 W=G𝑣0+∞
Assertion xrge0slmod WSLMod

Proof

Step Hyp Ref Expression
1 xrge0slmod.1 G=𝑠*𝑠0+∞
2 xrge0slmod.2 W=G𝑣0+∞
3 xrge0cmn 𝑠*𝑠0+∞CMnd
4 1 3 eqeltri GCMnd
5 ovex 0+∞V
6 2 resvcmn 0+∞VGCMndWCMnd
7 5 6 ax-mp GCMndWCMnd
8 4 7 mpbi WCMnd
9 rge0srg fld𝑠0+∞SRing
10 icossicc 0+∞0+∞
11 simplr q0+∞r0+∞x0+∞w0+∞r0+∞
12 10 11 sselid q0+∞r0+∞x0+∞w0+∞r0+∞
13 simprr q0+∞r0+∞x0+∞w0+∞w0+∞
14 ge0xmulcl r0+∞w0+∞r𝑒w0+∞
15 12 13 14 syl2anc q0+∞r0+∞x0+∞w0+∞r𝑒w0+∞
16 simprl q0+∞r0+∞x0+∞w0+∞x0+∞
17 xrge0adddi w0+∞x0+∞r0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒x
18 13 16 12 17 syl3anc q0+∞r0+∞x0+∞w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒x
19 rge0ssre 0+∞
20 simpll q0+∞r0+∞x0+∞w0+∞q0+∞
21 19 20 sselid q0+∞r0+∞x0+∞w0+∞q
22 19 11 sselid q0+∞r0+∞x0+∞w0+∞r
23 rexadd qrq+𝑒r=q+r
24 21 22 23 syl2anc q0+∞r0+∞x0+∞w0+∞q+𝑒r=q+r
25 24 oveq1d q0+∞r0+∞x0+∞w0+∞q+𝑒r𝑒w=q+r𝑒w
26 10 20 sselid q0+∞r0+∞x0+∞w0+∞q0+∞
27 xrge0adddir q0+∞r0+∞w0+∞q+𝑒r𝑒w=q𝑒w+𝑒r𝑒w
28 26 12 13 27 syl3anc q0+∞r0+∞x0+∞w0+∞q+𝑒r𝑒w=q𝑒w+𝑒r𝑒w
29 25 28 eqtr3d q0+∞r0+∞x0+∞w0+∞q+r𝑒w=q𝑒w+𝑒r𝑒w
30 15 18 29 3jca q0+∞r0+∞x0+∞w0+∞r𝑒w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒xq+r𝑒w=q𝑒w+𝑒r𝑒w
31 rexmul qrq𝑒r=qr
32 21 22 31 syl2anc q0+∞r0+∞x0+∞w0+∞q𝑒r=qr
33 32 oveq1d q0+∞r0+∞x0+∞w0+∞q𝑒r𝑒w=qr𝑒w
34 21 rexrd q0+∞r0+∞x0+∞w0+∞q*
35 22 rexrd q0+∞r0+∞x0+∞w0+∞r*
36 iccssxr 0+∞*
37 36 13 sselid q0+∞r0+∞x0+∞w0+∞w*
38 xmulass q*r*w*q𝑒r𝑒w=q𝑒r𝑒w
39 34 35 37 38 syl3anc q0+∞r0+∞x0+∞w0+∞q𝑒r𝑒w=q𝑒r𝑒w
40 33 39 eqtr3d q0+∞r0+∞x0+∞w0+∞qr𝑒w=q𝑒r𝑒w
41 xmullid w*1𝑒w=w
42 37 41 syl q0+∞r0+∞x0+∞w0+∞1𝑒w=w
43 xmul02 w*0𝑒w=0
44 37 43 syl q0+∞r0+∞x0+∞w0+∞0𝑒w=0
45 40 42 44 3jca q0+∞r0+∞x0+∞w0+∞qr𝑒w=q𝑒r𝑒w1𝑒w=w0𝑒w=0
46 30 45 jca q0+∞r0+∞x0+∞w0+∞r𝑒w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒xq+r𝑒w=q𝑒w+𝑒r𝑒wqr𝑒w=q𝑒r𝑒w1𝑒w=w0𝑒w=0
47 46 ralrimivva q0+∞r0+∞x0+∞w0+∞r𝑒w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒xq+r𝑒w=q𝑒w+𝑒r𝑒wqr𝑒w=q𝑒r𝑒w1𝑒w=w0𝑒w=0
48 47 rgen2 q0+∞r0+∞x0+∞w0+∞r𝑒w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒xq+r𝑒w=q𝑒w+𝑒r𝑒wqr𝑒w=q𝑒r𝑒w1𝑒w=w0𝑒w=0
49 xrge0base 0+∞=Base𝑠*𝑠0+∞
50 1 fveq2i BaseG=Base𝑠*𝑠0+∞
51 49 50 eqtr4i 0+∞=BaseG
52 2 51 resvbas 0+∞V0+∞=BaseW
53 5 52 ax-mp 0+∞=BaseW
54 xrge0plusg +𝑒=+𝑠*𝑠0+∞
55 1 fveq2i +G=+𝑠*𝑠0+∞
56 54 55 eqtr4i +𝑒=+G
57 2 56 resvplusg 0+∞V+𝑒=+W
58 5 57 ax-mp +𝑒=+W
59 ovex 0+∞V
60 ax-xrsvsca 𝑒=𝑠*
61 1 60 ressvsca 0+∞V𝑒=G
62 59 61 ax-mp 𝑒=G
63 2 62 resvvsca 0+∞V𝑒=W
64 5 63 ax-mp 𝑒=W
65 xrge00 0=0𝑠*𝑠0+∞
66 1 fveq2i 0G=0𝑠*𝑠0+∞
67 65 66 eqtr4i 0=0G
68 2 67 resv0g 0+∞V0=0W
69 5 68 ax-mp 0=0W
70 df-refld fld=fld𝑠
71 70 oveq1i fld𝑠0+∞=fld𝑠𝑠0+∞
72 reex V
73 ressress V0+∞Vfld𝑠𝑠0+∞=fld𝑠0+∞
74 72 5 73 mp2an fld𝑠𝑠0+∞=fld𝑠0+∞
75 71 74 eqtri fld𝑠0+∞=fld𝑠0+∞
76 ax-xrssca fld=Scalar𝑠*
77 1 76 resssca 0+∞Vfld=ScalarG
78 59 77 ax-mp fld=ScalarG
79 rebase =Basefld
80 2 78 79 resvsca 0+∞Vfld𝑠0+∞=ScalarW
81 5 80 ax-mp fld𝑠0+∞=ScalarW
82 incom 0+∞=0+∞
83 df-ss 0+∞0+∞=0+∞
84 19 83 mpbi 0+∞=0+∞
85 82 84 eqtr3i 0+∞=0+∞
86 85 oveq2i fld𝑠0+∞=fld𝑠0+∞
87 75 81 86 3eqtr3ri fld𝑠0+∞=ScalarW
88 ax-resscn
89 19 88 sstri 0+∞
90 eqid fld𝑠0+∞=fld𝑠0+∞
91 cnfldbas =Basefld
92 90 91 ressbas2 0+∞0+∞=Basefld𝑠0+∞
93 89 92 ax-mp 0+∞=Basefld𝑠0+∞
94 cnfldadd +=+fld
95 90 94 ressplusg 0+∞V+=+fld𝑠0+∞
96 5 95 ax-mp +=+fld𝑠0+∞
97 cnfldmul ×=fld
98 90 97 ressmulr 0+∞V×=fld𝑠0+∞
99 5 98 ax-mp ×=fld𝑠0+∞
100 cndrng fldDivRing
101 drngring fldDivRingfldRing
102 100 101 ax-mp fldRing
103 1re 1
104 0le1 01
105 ltpnf 11<+∞
106 103 105 ax-mp 1<+∞
107 103 104 106 3pm3.2i 1011<+∞
108 0re 0
109 pnfxr +∞*
110 elico2 0+∞*10+∞1011<+∞
111 108 109 110 mp2an 10+∞1011<+∞
112 107 111 mpbir 10+∞
113 cnfld1 1=1fld
114 90 91 113 ress1r fldRing10+∞0+∞1=1fld𝑠0+∞
115 102 112 89 114 mp3an 1=1fld𝑠0+∞
116 ringmnd fldRingfldMnd
117 100 101 116 mp2b fldMnd
118 0e0icopnf 00+∞
119 cnfld0 0=0fld
120 90 91 119 ress0g fldMnd00+∞0+∞0=0fld𝑠0+∞
121 117 118 89 120 mp3an 0=0fld𝑠0+∞
122 53 58 64 69 87 93 96 99 115 121 isslmd WSLModWCMndfld𝑠0+∞SRingq0+∞r0+∞x0+∞w0+∞r𝑒w0+∞r𝑒w+𝑒x=r𝑒w+𝑒r𝑒xq+r𝑒w=q𝑒w+𝑒r𝑒wqr𝑒w=q𝑒r𝑒w1𝑒w=w0𝑒w=0
123 8 9 48 122 mpbir3an WSLMod