Metamath Proof Explorer


Theorem asinneg

Description: The arcsine function is odd. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinneg AarcsinA=arcsinA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 mulcl iAiA
3 1 2 mpan AiA
4 ax-1cn 1
5 sqcl AA2
6 subcl 1A21A2
7 4 5 6 sylancr A1A2
8 7 sqrtcld A1A2
9 3 8 addcld AiA+1A2
10 asinlem AiA+1A20
11 9 10 logcld AlogiA+1A2
12 efneg logiA+1A2elogiA+1A2=1elogiA+1A2
13 11 12 syl AelogiA+1A2=1elogiA+1A2
14 eflog iA+1A2iA+1A20elogiA+1A2=iA+1A2
15 9 10 14 syl2anc AelogiA+1A2=iA+1A2
16 15 oveq2d A1elogiA+1A2=1iA+1A2
17 asinlem2 AiA+1A2iA+1A2=1
18 4 a1i A1
19 negcl AA
20 mulcl iAiA
21 1 19 20 sylancr AiA
22 19 sqcld AA2
23 subcl 1A21A2
24 4 22 23 sylancr A1A2
25 24 sqrtcld A1A2
26 21 25 addcld AiA+1A2
27 18 9 26 10 divmuld A1iA+1A2=iA+1A2iA+1A2iA+1A2=1
28 17 27 mpbird A1iA+1A2=iA+1A2
29 13 16 28 3eqtrd AelogiA+1A2=iA+1A2
30 asinlem AiA+1A20
31 19 30 syl AiA+1A20
32 11 negcld AlogiA+1A2
33 11 imnegd AlogiA+1A2=logiA+1A2
34 11 imcld AlogiA+1A2
35 34 renegcld AlogiA+1A2
36 pire π
37 36 a1i Aπ
38 9 10 logimcld Aπ<logiA+1A2logiA+1A2π
39 38 simprd AlogiA+1A2π
40 9 renegd AiA+1A2=iA+1A2
41 asinlem3 A0iA+1A2
42 9 recld AiA+1A2
43 42 le0neg2d A0iA+1A2iA+1A20
44 41 43 mpbid AiA+1A20
45 40 44 eqbrtrd AiA+1A20
46 9 negcld AiA+1A2
47 46 recld AiA+1A2
48 0re 0
49 lenlt iA+1A20iA+1A20¬0<iA+1A2
50 47 48 49 sylancl AiA+1A20¬0<iA+1A2
51 45 50 mpbid A¬0<iA+1A2
52 lognegb iA+1A2iA+1A20iA+1A2+logiA+1A2=π
53 9 10 52 syl2anc AiA+1A2+logiA+1A2=π
54 rpgt0 iA+1A2+0<iA+1A2
55 rpre iA+1A2+iA+1A2
56 55 rered iA+1A2+iA+1A2=iA+1A2
57 54 56 breqtrrd iA+1A2+0<iA+1A2
58 53 57 syl6bir AlogiA+1A2=π0<iA+1A2
59 58 necon3bd A¬0<iA+1A2logiA+1A2π
60 51 59 mpd AlogiA+1A2π
61 60 necomd AπlogiA+1A2
62 34 37 39 61 leneltd AlogiA+1A2<π
63 ltneg logiA+1A2πlogiA+1A2<ππ<logiA+1A2
64 34 36 63 sylancl AlogiA+1A2<ππ<logiA+1A2
65 62 64 mpbid Aπ<logiA+1A2
66 38 simpld Aπ<logiA+1A2
67 36 renegcli π
68 ltle πlogiA+1A2π<logiA+1A2πlogiA+1A2
69 67 34 68 sylancr Aπ<logiA+1A2πlogiA+1A2
70 66 69 mpd AπlogiA+1A2
71 lenegcon1 πlogiA+1A2πlogiA+1A2logiA+1A2π
72 36 34 71 sylancr AπlogiA+1A2logiA+1A2π
73 70 72 mpbid AlogiA+1A2π
74 67 rexri π*
75 elioc2 π*πlogiA+1A2ππlogiA+1A2π<logiA+1A2logiA+1A2π
76 74 36 75 mp2an logiA+1A2ππlogiA+1A2π<logiA+1A2logiA+1A2π
77 35 65 73 76 syl3anbrc AlogiA+1A2ππ
78 33 77 eqeltrd AlogiA+1A2ππ
79 imf :
80 ffn :Fn
81 elpreima FnlogiA+1A2-1ππlogiA+1A2logiA+1A2ππ
82 79 80 81 mp2b logiA+1A2-1ππlogiA+1A2logiA+1A2ππ
83 32 78 82 sylanbrc AlogiA+1A2-1ππ
84 logrn ranlog=-1ππ
85 83 84 eleqtrrdi AlogiA+1A2ranlog
86 logeftb iA+1A2iA+1A20logiA+1A2ranloglogiA+1A2=logiA+1A2elogiA+1A2=iA+1A2
87 26 31 85 86 syl3anc AlogiA+1A2=logiA+1A2elogiA+1A2=iA+1A2
88 29 87 mpbird AlogiA+1A2=logiA+1A2
89 88 oveq2d AilogiA+1A2=ilogiA+1A2
90 negicn i
91 mulneg2 ilogiA+1A2ilogiA+1A2=ilogiA+1A2
92 90 11 91 sylancr AilogiA+1A2=ilogiA+1A2
93 89 92 eqtrd AilogiA+1A2=ilogiA+1A2
94 asinval AarcsinA=ilogiA+1A2
95 19 94 syl AarcsinA=ilogiA+1A2
96 asinval AarcsinA=ilogiA+1A2
97 96 negeqd AarcsinA=ilogiA+1A2
98 93 95 97 3eqtr4d AarcsinA=arcsinA