Metamath Proof Explorer


Theorem climinf

Description: A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)

Ref Expression
Hypotheses climinf.3 Z=M
climinf.4 φM
climinf.5 φF:Z
climinf.6 φkZFk+1Fk
climinf.7 φxkZxFk
Assertion climinf φFsupranF<

Proof

Step Hyp Ref Expression
1 climinf.3 Z=M
2 climinf.4 φM
3 climinf.5 φF:Z
4 climinf.6 φkZFk+1Fk
5 climinf.7 φxkZxFk
6 3 frnd φranF
7 3 ffnd φFFnZ
8 uzid MMM
9 2 8 syl φMM
10 9 1 eleqtrrdi φMZ
11 fnfvelrn FFnZMZFMranF
12 7 10 11 syl2anc φFMranF
13 12 ne0d φranF
14 breq2 y=FkxyxFk
15 14 ralrn FFnZyranFxykZxFk
16 15 rexbidv FFnZxyranFxyxkZxFk
17 7 16 syl φxyranFxyxkZxFk
18 5 17 mpbird φxyranFxy
19 6 13 18 3jca φranFranFxyranFxy
20 19 adantr φy+ranFranFxyranFxy
21 infrecl ranFranFxyranFxysupranF<
22 20 21 syl φy+supranF<
23 simpr φy+y+
24 22 23 ltaddrpd φy+supranF<<supranF<+y
25 rpre y+y
26 25 adantl φy+y
27 22 26 readdcld φy+supranF<+y
28 infrglb ranFranFxyranFxysupranF<+ysupranF<<supranF<+ykranFk<supranF<+y
29 20 27 28 syl2anc φy+supranF<<supranF<+ykranFk<supranF<+y
30 24 29 mpbid φy+kranFk<supranF<+y
31 6 sselda φkranFk
32 31 adantlr φy+kranFk
33 22 adantr φy+kranFsupranF<
34 25 ad2antlr φy+kranFy
35 33 34 readdcld φy+kranFsupranF<+y
36 32 35 34 ltsub1d φy+kranFk<supranF<+yky<supranF<+y-y
37 6 13 18 21 syl3anc φsupranF<
38 37 recnd φsupranF<
39 38 ad2antrr φy+kranFsupranF<
40 34 recnd φy+kranFy
41 39 40 pncand φy+kranFsupranF<+y-y=supranF<
42 41 breq2d φy+kranFky<supranF<+y-yky<supranF<
43 36 42 bitrd φy+kranFk<supranF<+yky<supranF<
44 43 biimpd φy+kranFk<supranF<+yky<supranF<
45 44 reximdva φy+kranFk<supranF<+ykranFky<supranF<
46 30 45 mpd φy+kranFky<supranF<
47 oveq1 k=Fjky=Fjy
48 47 breq1d k=Fjky<supranF<Fjy<supranF<
49 48 rexrn FFnZkranFky<supranF<jZFjy<supranF<
50 7 49 syl φkranFky<supranF<jZFjy<supranF<
51 50 biimpa φkranFky<supranF<jZFjy<supranF<
52 46 51 syldan φy+jZFjy<supranF<
53 3 adantr φy+F:Z
54 1 uztrn2 jZkjkZ
55 ffvelcdm F:ZkZFk
56 53 54 55 syl2an φy+jZkjFk
57 simpl jZkjjZ
58 ffvelcdm F:ZjZFj
59 53 57 58 syl2an φy+jZkjFj
60 37 ad2antrr φy+jZkjsupranF<
61 simprr φy+jZkjkj
62 fzssuz jkj
63 uzss jMjM
64 63 1 sseqtrrdi jMjZ
65 64 1 eleq2s jZjZ
66 65 ad2antrl φy+jZkjjZ
67 62 66 sstrid φy+jZkjjkZ
68 ffvelcdm F:ZnZFn
69 68 ralrimiva F:ZnZFn
70 3 69 syl φnZFn
71 70 ad2antrr φy+jZkjnZFn
72 ssralv jkZnZFnnjkFn
73 67 71 72 sylc φy+jZkjnjkFn
74 73 r19.21bi φy+jZkjnjkFn
75 fzssuz jk1j
76 75 66 sstrid φy+jZkjjk1Z
77 76 sselda φy+jZkjnjk1nZ
78 4 ralrimiva φkZFk+1Fk
79 78 ad2antrr φy+jZkjkZFk+1Fk
80 fvoveq1 k=nFk+1=Fn+1
81 fveq2 k=nFk=Fn
82 80 81 breq12d k=nFk+1FkFn+1Fn
83 82 rspccva kZFk+1FknZFn+1Fn
84 79 83 sylan φy+jZkjnZFn+1Fn
85 77 84 syldan φy+jZkjnjk1Fn+1Fn
86 61 74 85 monoord2 φy+jZkjFkFj
87 56 59 60 86 lesub1dd φy+jZkjFksupranF<FjsupranF<
88 56 60 resubcld φy+jZkjFksupranF<
89 59 60 resubcld φy+jZkjFjsupranF<
90 25 ad2antlr φy+jZkjy
91 lelttr FksupranF<FjsupranF<yFksupranF<FjsupranF<FjsupranF<<yFksupranF<<y
92 88 89 90 91 syl3anc φy+jZkjFksupranF<FjsupranF<FjsupranF<<yFksupranF<<y
93 87 92 mpand φy+jZkjFjsupranF<<yFksupranF<<y
94 ltsub23 FjysupranF<Fjy<supranF<FjsupranF<<y
95 59 90 60 94 syl3anc φy+jZkjFjy<supranF<FjsupranF<<y
96 6 ad2antrr φy+jZkjranF
97 7 adantr φy+FFnZ
98 fnfvelrn FFnZkZFkranF
99 97 54 98 syl2an φy+jZkjFkranF
100 96 99 sseldd φy+jZkjFk
101 18 ad2antrr φy+jZkjxyranFxy
102 infrelb ranFxyranFxyFkranFsupranF<Fk
103 96 101 99 102 syl3anc φy+jZkjsupranF<Fk
104 60 100 103 abssubge0d φy+jZkjFksupranF<=FksupranF<
105 104 breq1d φy+jZkjFksupranF<<yFksupranF<<y
106 93 95 105 3imtr4d φy+jZkjFjy<supranF<FksupranF<<y
107 106 anassrs φy+jZkjFjy<supranF<FksupranF<<y
108 107 ralrimdva φy+jZFjy<supranF<kjFksupranF<<y
109 108 reximdva φy+jZFjy<supranF<jZkjFksupranF<<y
110 52 109 mpd φy+jZkjFksupranF<<y
111 110 ralrimiva φy+jZkjFksupranF<<y
112 1 fvexi ZV
113 fex F:ZZVFV
114 3 112 113 sylancl φFV
115 eqidd φkZFk=Fk
116 3 ffvelcdmda φkZFk
117 116 recnd φkZFk
118 1 2 114 115 38 117 clim2c φFsupranF<y+jZkjFksupranF<<y
119 111 118 mpbird φFsupranF<