Metamath Proof Explorer


Theorem cmpcld

Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009)

Ref Expression
Assertion cmpcld JCompSClsdJJ𝑡SComp

Proof

Step Hyp Ref Expression
1 velpw s𝒫JsJ
2 simp1l JCompSClsdJsJSsJComp
3 simp2 JCompSClsdJsJSssJ
4 eqid J=J
5 4 cldopn SClsdJJSJ
6 5 adantl JCompSClsdJJSJ
7 6 3ad2ant1 JCompSClsdJsJSsJSJ
8 7 snssd JCompSClsdJsJSsJSJ
9 3 8 unssd JCompSClsdJsJSssJSJ
10 simp3 JCompSClsdJsJSsSs
11 uniss sJsJ
12 11 3ad2ant2 JCompSClsdJsJSssJ
13 10 12 sstrd JCompSClsdJsJSsSJ
14 undif SJSJS=J
15 13 14 sylib JCompSClsdJsJSsSJS=J
16 unss1 SsSJSsJS
17 16 3ad2ant3 JCompSClsdJsJSsSJSsJS
18 15 17 eqsstrrd JCompSClsdJsJSsJsJS
19 difss JSJ
20 unss sJJSJsJSJ
21 12 19 20 sylanblc JCompSClsdJsJSssJSJ
22 18 21 eqssd JCompSClsdJsJSsJ=sJS
23 uniexg JCompJV
24 23 ad2antrr JCompSClsdJsJJV
25 24 3adant3 JCompSClsdJsJSsJV
26 difexg JVJSV
27 unisng JSVJS=JS
28 25 26 27 3syl JCompSClsdJsJSsJS=JS
29 28 uneq2d JCompSClsdJsJSssJS=sJS
30 22 29 eqtr4d JCompSClsdJsJSsJ=sJS
31 uniun sJS=sJS
32 30 31 eqtr4di JCompSClsdJsJSsJ=sJS
33 4 cmpcov JCompsJSJJ=sJSu𝒫sJSFinJ=u
34 2 9 32 33 syl3anc JCompSClsdJsJSsu𝒫sJSFinJ=u
35 elfpw u𝒫sJSFinusJSuFin
36 simp2l JCompSClsdJsJSsusJSuFinJ=uusJS
37 uncom sJS=JSs
38 36 37 sseqtrdi JCompSClsdJsJSsusJSuFinJ=uuJSs
39 ssundif uJSsuJSs
40 38 39 sylib JCompSClsdJsJSsusJSuFinJ=uuJSs
41 diffi uFinuJSFin
42 41 ad2antll JCompSClsdJsJSsusJSuFinuJSFin
43 42 3adant3 JCompSClsdJsJSsusJSuFinJ=uuJSFin
44 elfpw uJS𝒫sFinuJSsuJSFin
45 40 43 44 sylanbrc JCompSClsdJsJSsusJSuFinJ=uuJS𝒫sFin
46 10 3ad2ant1 JCompSClsdJsJSsusJSuFinJ=uSs
47 12 3ad2ant1 JCompSClsdJsJSsusJSuFinJ=usJ
48 simp3 JCompSClsdJsJSsusJSuFinJ=uJ=u
49 47 48 sseqtrd JCompSClsdJsJSsusJSuFinJ=usu
50 46 49 sstrd JCompSClsdJsJSsusJSuFinJ=uSu
51 50 sselda JCompSClsdJsJSsusJSuFinJ=uvSvu
52 eluni vuwvwwu
53 51 52 sylib JCompSClsdJsJSsusJSuFinJ=uvSwvwwu
54 simpl vwwuvw
55 54 a1i JCompSClsdJsJSsusJSuFinJ=uvSvwwuvw
56 simpr vwwuwu
57 56 a1i JCompSClsdJsJSsusJSuFinJ=uvSvwwuwu
58 elndif vS¬vJS
59 58 ad2antlr JCompSClsdJsJSsusJSuFinJ=uvSvw¬vJS
60 eleq2 w=JSvwvJS
61 60 biimpd w=JSvwvJS
62 61 a1i JCompSClsdJsJSsusJSuFinJ=uvSw=JSvwvJS
63 62 com23 JCompSClsdJsJSsusJSuFinJ=uvSvww=JSvJS
64 63 imp JCompSClsdJsJSsusJSuFinJ=uvSvww=JSvJS
65 59 64 mtod JCompSClsdJsJSsusJSuFinJ=uvSvw¬w=JS
66 65 ex JCompSClsdJsJSsusJSuFinJ=uvSvw¬w=JS
67 66 adantrd JCompSClsdJsJSsusJSuFinJ=uvSvwwu¬w=JS
68 velsn wJSw=JS
69 68 notbii ¬wJS¬w=JS
70 67 69 imbitrrdi JCompSClsdJsJSsusJSuFinJ=uvSvwwu¬wJS
71 57 70 jcad JCompSClsdJsJSsusJSuFinJ=uvSvwwuwu¬wJS
72 eldif wuJSwu¬wJS
73 71 72 imbitrrdi JCompSClsdJsJSsusJSuFinJ=uvSvwwuwuJS
74 55 73 jcad JCompSClsdJsJSsusJSuFinJ=uvSvwwuvwwuJS
75 74 eximdv JCompSClsdJsJSsusJSuFinJ=uvSwvwwuwvwwuJS
76 53 75 mpd JCompSClsdJsJSsusJSuFinJ=uvSwvwwuJS
77 76 ex JCompSClsdJsJSsusJSuFinJ=uvSwvwwuJS
78 eluni vuJSwvwwuJS
79 77 78 imbitrrdi JCompSClsdJsJSsusJSuFinJ=uvSvuJS
80 79 ssrdv JCompSClsdJsJSsusJSuFinJ=uSuJS
81 unieq t=uJSt=uJS
82 81 sseq2d t=uJSStSuJS
83 82 rspcev uJS𝒫sFinSuJSt𝒫sFinSt
84 45 80 83 syl2anc JCompSClsdJsJSsusJSuFinJ=ut𝒫sFinSt
85 35 84 syl3an2b JCompSClsdJsJSsu𝒫sJSFinJ=ut𝒫sFinSt
86 85 rexlimdv3a JCompSClsdJsJSsu𝒫sJSFinJ=ut𝒫sFinSt
87 34 86 mpd JCompSClsdJsJSst𝒫sFinSt
88 87 3exp JCompSClsdJsJSst𝒫sFinSt
89 1 88 biimtrid JCompSClsdJs𝒫JSst𝒫sFinSt
90 89 ralrimiv JCompSClsdJs𝒫JSst𝒫sFinSt
91 cmptop JCompJTop
92 4 cldss SClsdJSJ
93 4 cmpsub JTopSJJ𝑡SComps𝒫JSst𝒫sFinSt
94 91 92 93 syl2an JCompSClsdJJ𝑡SComps𝒫JSst𝒫sFinSt
95 90 94 mpbird JCompSClsdJJ𝑡SComp