Metamath Proof Explorer


Theorem crctcshwlkn0lem4

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 12-Mar-2021)

Ref Expression
Hypotheses crctcshwlkn0lem.s φS1..^N
crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
crctcshwlkn0lem.h H=FcyclShiftS
crctcshwlkn0lem.n N=F
crctcshwlkn0lem.f φFWordA
crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
Assertion crctcshwlkn0lem4 φj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHj

Proof

Step Hyp Ref Expression
1 crctcshwlkn0lem.s φS1..^N
2 crctcshwlkn0lem.q Q=x0NifxNSPx+SPx+S-N
3 crctcshwlkn0lem.h H=FcyclShiftS
4 crctcshwlkn0lem.n N=F
5 crctcshwlkn0lem.f φFWordA
6 crctcshwlkn0lem.p φi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFi
7 elfzoelz j0..^NSj
8 7 zcnd j0..^NSj
9 8 adantl S1..^Nj0..^NSj
10 elfzoelz S1..^NS
11 10 zcnd S1..^NS
12 11 adantr S1..^Nj0..^NSS
13 1cnd S1..^Nj0..^NS1
14 9 12 13 add32d S1..^Nj0..^NSj+S+1=j+1+S
15 elfzo1 S1..^NSNS<N
16 elfzonn0 j0..^NSj0
17 nnnn0 SS0
18 nn0addcl j0S0j+S0
19 18 ex j0S0j+S0
20 16 17 19 syl2imc Sj0..^NSj+S0
21 20 3ad2ant1 SNS<Nj0..^NSj+S0
22 15 21 sylbi S1..^Nj0..^NSj+S0
23 22 imp S1..^Nj0..^NSj+S0
24 fzo0ss1 1..^N0..^N
25 24 sseli S1..^NS0..^N
26 elfzo0 S0..^NS0NS<N
27 26 simp2bi S0..^NN
28 25 27 syl S1..^NN
29 28 adantr S1..^Nj0..^NSN
30 elfzo0 j0..^NSj0NSj<NS
31 nn0re j0j
32 nnre SS
33 nnre NN
34 32 33 anim12i SNSN
35 34 3adant3 SNS<NSN
36 15 35 sylbi S1..^NSN
37 31 36 anim12i j0S1..^NjSN
38 3anass jSNjSN
39 37 38 sylibr j0S1..^NjSN
40 ltaddsub jSNj+S<Nj<NS
41 40 bicomd jSNj<NSj+S<N
42 39 41 syl j0S1..^Nj<NSj+S<N
43 42 biimpd j0S1..^Nj<NSj+S<N
44 43 ex j0S1..^Nj<NSj+S<N
45 44 com23 j0j<NSS1..^Nj+S<N
46 45 a1d j0NSj<NSS1..^Nj+S<N
47 46 3imp j0NSj<NSS1..^Nj+S<N
48 30 47 sylbi j0..^NSS1..^Nj+S<N
49 48 impcom S1..^Nj0..^NSj+S<N
50 elfzo0 j+S0..^Nj+S0Nj+S<N
51 23 29 49 50 syl3anbrc S1..^Nj0..^NSj+S0..^N
52 51 adantr S1..^Nj0..^NSj+S+1=j+1+Sj+S0..^N
53 fveq2 i=j+SPi=Pj+S
54 53 adantl S1..^Nj0..^NSj+S+1=j+1+Si=j+SPi=Pj+S
55 fvoveq1 i=j+SPi+1=Pj+S+1
56 simpr S1..^Nj0..^NSj+S+1=j+1+Sj+S+1=j+1+S
57 56 fveq2d S1..^Nj0..^NSj+S+1=j+1+SPj+S+1=Pj+1+S
58 55 57 sylan9eqr S1..^Nj0..^NSj+S+1=j+1+Si=j+SPi+1=Pj+1+S
59 54 58 eqeq12d S1..^Nj0..^NSj+S+1=j+1+Si=j+SPi=Pi+1Pj+S=Pj+1+S
60 2fveq3 i=j+SIFi=IFj+S
61 53 sneqd i=j+SPi=Pj+S
62 60 61 eqeq12d i=j+SIFi=PiIFj+S=Pj+S
63 62 adantl S1..^Nj0..^NSj+S+1=j+1+Si=j+SIFi=PiIFj+S=Pj+S
64 54 58 preq12d S1..^Nj0..^NSj+S+1=j+1+Si=j+SPiPi+1=Pj+SPj+1+S
65 60 adantl S1..^Nj0..^NSj+S+1=j+1+Si=j+SIFi=IFj+S
66 64 65 sseq12d S1..^Nj0..^NSj+S+1=j+1+Si=j+SPiPi+1IFiPj+SPj+1+SIFj+S
67 59 63 66 ifpbi123d S1..^Nj0..^NSj+S+1=j+1+Si=j+Sif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
68 52 67 rspcdv S1..^Nj0..^NSj+S+1=j+1+Si0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
69 14 68 mpdan S1..^Nj0..^NSi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
70 1 69 sylan φj0..^NSi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
71 70 ex φj0..^NSi0..^Nif-Pi=Pi+1IFi=PiPiPi+1IFiif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
72 6 71 mpid φj0..^NSif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
73 72 imp φj0..^NSif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
74 elfzofz j0..^NSj0NS
75 1 2 crctcshwlkn0lem2 φj0NSQj=Pj+S
76 74 75 sylan2 φj0..^NSQj=Pj+S
77 fzofzp1 j0..^NSj+10NS
78 1 2 crctcshwlkn0lem2 φj+10NSQj+1=Pj+1+S
79 77 78 sylan2 φj0..^NSQj+1=Pj+1+S
80 3 fveq1i Hj=FcyclShiftSj
81 5 adantr φj0..^NSFWordA
82 1 10 syl φS
83 82 adantr φj0..^NSS
84 nnz NN
85 84 adantl SNN
86 nnz SS
87 86 adantr SNS
88 85 87 zsubcld SNNS
89 17 nn0ge0d S0S
90 89 adantr SN0S
91 subge02 NS0SNSN
92 33 32 91 syl2anr SN0SNSN
93 90 92 mpbid SNNSN
94 88 85 93 3jca SNNSNNSN
95 94 3adant3 SNS<NNSNNSN
96 15 95 sylbi S1..^NNSNNSN
97 eluz2 NNSNSNNSN
98 96 97 sylibr S1..^NNNS
99 fzoss2 NNS0..^NS0..^N
100 1 98 99 3syl φ0..^NS0..^N
101 100 sselda φj0..^NSj0..^N
102 4 oveq2i 0..^N=0..^F
103 101 102 eleqtrdi φj0..^NSj0..^F
104 cshwidxmod FWordASj0..^FFcyclShiftSj=Fj+SmodF
105 81 83 103 104 syl3anc φj0..^NSFcyclShiftSj=Fj+SmodF
106 4 eqcomi F=N
107 106 oveq2i j+SmodF=j+SmodN
108 21 imp SNS<Nj0..^NSj+S0
109 nnm1nn0 NN10
110 109 3ad2ant2 SNS<NN10
111 110 adantr SNS<Nj0..^NSN10
112 31 35 anim12i j0SNS<NjSN
113 112 38 sylibr j0SNS<NjSN
114 113 41 syl j0SNS<Nj<NSj+S<N
115 17 3ad2ant1 SNS<NS0
116 115 18 sylan2 j0SNS<Nj+S0
117 116 nn0zd j0SNS<Nj+S
118 84 3ad2ant2 SNS<NN
119 118 adantl j0SNS<NN
120 zltlem1 j+SNj+S<Nj+SN1
121 117 119 120 syl2anc j0SNS<Nj+S<Nj+SN1
122 121 biimpd j0SNS<Nj+S<Nj+SN1
123 114 122 sylbid j0SNS<Nj<NSj+SN1
124 123 impancom j0j<NSSNS<Nj+SN1
125 124 3adant2 j0NSj<NSSNS<Nj+SN1
126 30 125 sylbi j0..^NSSNS<Nj+SN1
127 126 impcom SNS<Nj0..^NSj+SN1
128 108 111 127 3jca SNS<Nj0..^NSj+S0N10j+SN1
129 15 128 sylanb S1..^Nj0..^NSj+S0N10j+SN1
130 elfz2nn0 j+S0N1j+S0N10j+SN1
131 129 130 sylibr S1..^Nj0..^NSj+S0N1
132 zaddcl jSj+S
133 7 10 132 syl2anr S1..^Nj0..^NSj+S
134 zmodid2 j+SNj+SmodN=j+Sj+S0N1
135 133 29 134 syl2anc S1..^Nj0..^NSj+SmodN=j+Sj+S0N1
136 131 135 mpbird S1..^Nj0..^NSj+SmodN=j+S
137 1 136 sylan φj0..^NSj+SmodN=j+S
138 107 137 eqtrid φj0..^NSj+SmodF=j+S
139 138 fveq2d φj0..^NSFj+SmodF=Fj+S
140 105 139 eqtrd φj0..^NSFcyclShiftSj=Fj+S
141 80 140 eqtrid φj0..^NSHj=Fj+S
142 141 fveq2d φj0..^NSIHj=IFj+S
143 simp1 Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQj=Pj+S
144 simp2 Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQj+1=Pj+1+S
145 143 144 eqeq12d Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQj=Qj+1Pj+S=Pj+1+S
146 simp3 Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SIHj=IFj+S
147 143 sneqd Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQj=Pj+S
148 146 147 eqeq12d Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SIHj=QjIFj+S=Pj+S
149 143 144 preq12d Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQjQj+1=Pj+SPj+1+S
150 149 146 sseq12d Qj=Pj+SQj+1=Pj+1+SIHj=IFj+SQjQj+1IHjPj+SPj+1+SIFj+S
151 145 148 150 ifpbi123d Qj=Pj+SQj+1=Pj+1+SIHj=IFj+Sif-Qj=Qj+1IHj=QjQjQj+1IHjif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
152 76 79 142 151 syl3anc φj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHjif-Pj+S=Pj+1+SIFj+S=Pj+SPj+SPj+1+SIFj+S
153 73 152 mpbird φj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHj
154 153 ralrimiva φj0..^NSif-Qj=Qj+1IHj=QjQjQj+1IHj