Metamath Proof Explorer


Theorem cvmlift3lem9

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
Assertion cvmlift3lem9 φfKCnCFf=GfO=P

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 cvmlift3lem7.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
12 1 2 3 4 5 6 7 8 9 10 11 cvmlift3lem8 φHKCnC
13 1 2 3 4 5 6 7 8 9 10 cvmlift3lem5 φFH=G
14 iitopon IITopOn01
15 14 a1i φIITopOn01
16 sconntop KSConnKTop
17 4 16 syl φKTop
18 2 toptopon KTopKTopOnY
19 17 18 sylib φKTopOnY
20 cnconst2 IITopOn01KTopOnYOY01×OIICnK
21 15 19 6 20 syl3anc φ01×OIICnK
22 0elunit 001
23 fvconst2g OY00101×O0=O
24 6 22 23 sylancl φ01×O0=O
25 1elunit 101
26 fvconst2g OY10101×O1=O
27 6 25 26 sylancl φ01×O1=O
28 9 sneqd φFP=GO
29 28 xpeq2d φ01×FP=01×GO
30 cvmcn FCCovMapJFCCnJ
31 eqid J=J
32 1 31 cnf FCCnJF:BJ
33 ffn F:BJFFnB
34 3 30 32 33 4syl φFFnB
35 fcoconst FFnBPBF01×P=01×FP
36 34 8 35 syl2anc φF01×P=01×FP
37 2 31 cnf GKCnJG:YJ
38 7 37 syl φG:YJ
39 38 ffnd φGFnY
40 fcoconst GFnYOYG01×O=01×GO
41 39 6 40 syl2anc φG01×O=01×GO
42 29 36 41 3eqtr4d φF01×P=G01×O
43 fvconst2g PB00101×P0=P
44 8 22 43 sylancl φ01×P0=P
45 cvmtop1 FCCovMapJCTop
46 3 45 syl φCTop
47 1 toptopon CTopCTopOnB
48 46 47 sylib φCTopOnB
49 cnconst2 IITopOn01CTopOnBPB01×PIICnC
50 15 48 8 49 syl3anc φ01×PIICnC
51 cvmtop2 FCCovMapJJTop
52 3 51 syl φJTop
53 31 toptopon JTopJTopOnJ
54 52 53 sylib φJTopOnJ
55 38 6 ffvelcdmd φGOJ
56 cnconst2 IITopOn01JTopOnJGOJ01×GOIICnJ
57 15 54 55 56 syl3anc φ01×GOIICnJ
58 41 57 eqeltrd φG01×OIICnJ
59 fvconst2g GOJ00101×GO0=GO
60 55 22 59 sylancl φ01×GO0=GO
61 41 fveq1d φG01×O0=01×GO0
62 60 61 9 3eqtr4rd φFP=G01×O0
63 1 cvmlift FCCovMapJG01×OIICnJPBFP=G01×O0∃!gIICnCFg=G01×Og0=P
64 3 58 8 62 63 syl22anc φ∃!gIICnCFg=G01×Og0=P
65 coeq2 g=01×PFg=F01×P
66 65 eqeq1d g=01×PFg=G01×OF01×P=G01×O
67 fveq1 g=01×Pg0=01×P0
68 67 eqeq1d g=01×Pg0=P01×P0=P
69 66 68 anbi12d g=01×PFg=G01×Og0=PF01×P=G01×O01×P0=P
70 69 riota2 01×PIICnC∃!gIICnCFg=G01×Og0=PF01×P=G01×O01×P0=PιgIICnC|Fg=G01×Og0=P=01×P
71 50 64 70 syl2anc φF01×P=G01×O01×P0=PιgIICnC|Fg=G01×Og0=P=01×P
72 42 44 71 mpbi2and φιgIICnC|Fg=G01×Og0=P=01×P
73 72 fveq1d φιgIICnC|Fg=G01×Og0=P1=01×P1
74 fvconst2g PB10101×P1=P
75 8 25 74 sylancl φ01×P1=P
76 73 75 eqtrd φιgIICnC|Fg=G01×Og0=P1=P
77 fveq1 f=01×Of0=01×O0
78 77 eqeq1d f=01×Of0=O01×O0=O
79 fveq1 f=01×Of1=01×O1
80 79 eqeq1d f=01×Of1=O01×O1=O
81 coeq2 f=01×OGf=G01×O
82 81 eqeq2d f=01×OFg=GfFg=G01×O
83 82 anbi1d f=01×OFg=Gfg0=PFg=G01×Og0=P
84 83 riotabidv f=01×OιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=G01×Og0=P
85 84 fveq1d f=01×OιgIICnC|Fg=Gfg0=P1=ιgIICnC|Fg=G01×Og0=P1
86 85 eqeq1d f=01×OιgIICnC|Fg=Gfg0=P1=PιgIICnC|Fg=G01×Og0=P1=P
87 78 80 86 3anbi123d f=01×Of0=Of1=OιgIICnC|Fg=Gfg0=P1=P01×O0=O01×O1=OιgIICnC|Fg=G01×Og0=P1=P
88 87 rspcev 01×OIICnK01×O0=O01×O1=OιgIICnC|Fg=G01×Og0=P1=PfIICnKf0=Of1=OιgIICnC|Fg=Gfg0=P1=P
89 21 24 27 76 88 syl13anc φfIICnKf0=Of1=OιgIICnC|Fg=Gfg0=P1=P
90 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 φOYHO=PfIICnKf0=Of1=OιgIICnC|Fg=Gfg0=P1=P
91 6 90 mpdan φHO=PfIICnKf0=Of1=OιgIICnC|Fg=Gfg0=P1=P
92 89 91 mpbird φHO=P
93 coeq2 f=HFf=FH
94 93 eqeq1d f=HFf=GFH=G
95 fveq1 f=HfO=HO
96 95 eqeq1d f=HfO=PHO=P
97 94 96 anbi12d f=HFf=GfO=PFH=GHO=P
98 97 rspcev HKCnCFH=GHO=PfKCnCFf=GfO=P
99 12 13 92 98 syl12anc φfKCnCFf=GfO=P