Metamath Proof Explorer


Theorem cycpmco2lem7

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M = toCyc D
cycpmco2.s S = SymGrp D
cycpmco2.d φ D V
cycpmco2.w φ W dom M
cycpmco2.i φ I D ran W
cycpmco2.j φ J ran W
cycpmco2.e E = W -1 J + 1
cycpmco2.1 U = W splice E E ⟨“ I ”⟩
cycpmco2lem7.1 φ K ran W
cycpmco2lem7.2 φ K J
cycpmco2lem7.3 φ U -1 K 0 ..^ E
Assertion cycpmco2lem7 φ M U K = M W K

Proof

Step Hyp Ref Expression
1 cycpmco2.c M = toCyc D
2 cycpmco2.s S = SymGrp D
3 cycpmco2.d φ D V
4 cycpmco2.w φ W dom M
5 cycpmco2.i φ I D ran W
6 cycpmco2.j φ J ran W
7 cycpmco2.e E = W -1 J + 1
8 cycpmco2.1 U = W splice E E ⟨“ I ”⟩
9 cycpmco2lem7.1 φ K ran W
10 cycpmco2lem7.2 φ K J
11 cycpmco2lem7.3 φ U -1 K 0 ..^ E
12 ssrab2 w Word D | w : dom w 1-1 D Word D
13 eqid Base S = Base S
14 1 2 13 tocycf D V M : w Word D | w : dom w 1-1 D Base S
15 3 14 syl φ M : w Word D | w : dom w 1-1 D Base S
16 15 fdmd φ dom M = w Word D | w : dom w 1-1 D
17 4 16 eleqtrd φ W w Word D | w : dom w 1-1 D
18 12 17 sselid φ W Word D
19 5 eldifad φ I D
20 19 s1cld φ ⟨“ I ”⟩ Word D
21 splcl W Word D ⟨“ I ”⟩ Word D W splice E E ⟨“ I ”⟩ Word D
22 18 20 21 syl2anc φ W splice E E ⟨“ I ”⟩ Word D
23 8 22 eqeltrid φ U Word D
24 1 2 3 4 5 6 7 8 cycpmco2f1 φ U : dom U 1-1 D
25 id w = W w = W
26 dmeq w = W dom w = dom W
27 eqidd w = W D = D
28 25 26 27 f1eq123d w = W w : dom w 1-1 D W : dom W 1-1 D
29 28 elrab W w Word D | w : dom w 1-1 D W Word D W : dom W 1-1 D
30 17 29 sylib φ W Word D W : dom W 1-1 D
31 30 simprd φ W : dom W 1-1 D
32 f1cnv W : dom W 1-1 D W -1 : ran W 1-1 onto dom W
33 f1of W -1 : ran W 1-1 onto dom W W -1 : ran W dom W
34 31 32 33 3syl φ W -1 : ran W dom W
35 34 6 ffvelrnd φ W -1 J dom W
36 wrddm W Word D dom W = 0 ..^ W
37 18 36 syl φ dom W = 0 ..^ W
38 35 37 eleqtrd φ W -1 J 0 ..^ W
39 fzofzp1 W -1 J 0 ..^ W W -1 J + 1 0 W
40 38 39 syl φ W -1 J + 1 0 W
41 7 40 eqeltrid φ E 0 W
42 elfzuz3 E 0 W W E
43 fzoss2 W E 0 ..^ E 0 ..^ W
44 41 42 43 3syl φ 0 ..^ E 0 ..^ W
45 1 2 3 4 5 6 7 8 cycpmco2lem3 φ U 1 = W
46 45 oveq2d φ 0 ..^ U 1 = 0 ..^ W
47 44 46 sseqtrrd φ 0 ..^ E 0 ..^ U 1
48 47 11 sseldd φ U -1 K 0 ..^ U 1
49 1 3 23 24 48 cycpmfv1 φ M U U U -1 K = U U -1 K + 1
50 f1f1orn U : dom U 1-1 D U : dom U 1-1 onto ran U
51 24 50 syl φ U : dom U 1-1 onto ran U
52 ssun1 ran W ran W I
53 1 2 3 4 5 6 7 8 cycpmco2rn φ ran U = ran W I
54 52 53 sseqtrrid φ ran W ran U
55 54 sselda φ K ran W K ran U
56 f1ocnvfv2 U : dom U 1-1 onto ran U K ran U U U -1 K = K
57 51 55 56 syl2an2r φ K ran W U U -1 K = K
58 57 fveq2d φ K ran W M U U U -1 K = M U K
59 9 58 mpdan φ M U U U -1 K = M U K
60 f1f1orn W : dom W 1-1 D W : dom W 1-1 onto ran W
61 31 60 syl φ W : dom W 1-1 onto ran W
62 44 37 sseqtrrd φ 0 ..^ E dom W
63 62 11 sseldd φ U -1 K dom W
64 f1ocnvfv1 W : dom W 1-1 onto ran W U -1 K dom W W -1 W U -1 K = U -1 K
65 61 63 64 syl2anc φ W -1 W U -1 K = U -1 K
66 8 fveq1i U U -1 K = W splice E E ⟨“ I ”⟩ U -1 K
67 fz0ssnn0 0 W 0
68 67 41 sselid φ E 0
69 nn0fz0 E 0 E 0 E
70 68 69 sylib φ E 0 E
71 18 70 41 20 11 splfv1 φ W splice E E ⟨“ I ”⟩ U -1 K = W U -1 K
72 66 71 eqtrid φ U U -1 K = W U -1 K
73 9 57 mpdan φ U U -1 K = K
74 72 73 eqtr3d φ W U -1 K = K
75 74 fveq2d φ W -1 W U -1 K = W -1 K
76 65 75 eqtr3d φ U -1 K = W -1 K
77 76 oveq1d φ U -1 K + 1 = W -1 K + 1
78 77 fveq2d φ U U -1 K + 1 = U W -1 K + 1
79 49 59 78 3eqtr3d φ M U K = U W -1 K + 1
80 8 a1i φ U = W splice E E ⟨“ I ”⟩
81 80 fveq1d φ U W -1 K + 1 = W splice E E ⟨“ I ”⟩ W -1 K + 1
82 41 elfzelzd φ E
83 simpr φ U -1 K 0 ..^ E 1 U -1 K 0 ..^ E 1
84 7 a1i φ E = W -1 J + 1
85 84 oveq1d φ E 1 = W -1 J + 1 - 1
86 elfzonn0 W -1 J 0 ..^ W W -1 J 0
87 38 86 syl φ W -1 J 0
88 87 nn0cnd φ W -1 J
89 1cnd φ 1
90 88 89 pncand φ W -1 J + 1 - 1 = W -1 J
91 85 90 eqtr2d φ W -1 J = E 1
92 91 adantr φ U -1 K = E 1 W -1 J = E 1
93 simpr φ U -1 K = E 1 U -1 K = E 1
94 76 adantr φ U -1 K = E 1 U -1 K = W -1 K
95 92 93 94 3eqtr2rd φ U -1 K = E 1 W -1 K = W -1 J
96 95 fveq2d φ U -1 K = E 1 W W -1 K = W W -1 J
97 f1ocnvfv2 W : dom W 1-1 onto ran W K ran W W W -1 K = K
98 61 9 97 syl2anc φ W W -1 K = K
99 98 adantr φ U -1 K = E 1 W W -1 K = K
100 f1ocnvfv2 W : dom W 1-1 onto ran W J ran W W W -1 J = J
101 61 6 100 syl2anc φ W W -1 J = J
102 101 adantr φ U -1 K = E 1 W W -1 J = J
103 96 99 102 3eqtr3d φ U -1 K = E 1 K = J
104 10 adantr φ U -1 K = E 1 K J
105 103 104 pm2.21ddne φ U -1 K = E 1 U -1 K 0 ..^ E 1
106 0zd φ 0
107 nn0p1nn W -1 J 0 W -1 J + 1
108 87 107 syl φ W -1 J + 1
109 7 108 eqeltrid φ E
110 0p1e1 0 + 1 = 1
111 110 fveq2i 0 + 1 = 1
112 nnuz = 1
113 111 112 eqtr4i 0 + 1 =
114 109 113 eleqtrrdi φ E 0 + 1
115 fzosplitsnm1 0 E 0 + 1 0 ..^ E = 0 ..^ E 1 E 1
116 106 114 115 syl2anc φ 0 ..^ E = 0 ..^ E 1 E 1
117 11 116 eleqtrd φ U -1 K 0 ..^ E 1 E 1
118 fvex U -1 K V
119 elunsn U -1 K V U -1 K 0 ..^ E 1 E 1 U -1 K 0 ..^ E 1 U -1 K = E 1
120 118 119 ax-mp U -1 K 0 ..^ E 1 E 1 U -1 K 0 ..^ E 1 U -1 K = E 1
121 117 120 sylib φ U -1 K 0 ..^ E 1 U -1 K = E 1
122 83 105 121 mpjaodan φ U -1 K 0 ..^ E 1
123 elfzom1elp1fzo E U -1 K 0 ..^ E 1 U -1 K + 1 0 ..^ E
124 82 122 123 syl2anc φ U -1 K + 1 0 ..^ E
125 77 124 eqeltrrd φ W -1 K + 1 0 ..^ E
126 18 70 41 20 125 splfv1 φ W splice E E ⟨“ I ”⟩ W -1 K + 1 = W W -1 K + 1
127 81 126 eqtrd φ U W -1 K + 1 = W W -1 K + 1
128 1zzd φ 1
129 82 128 zsubcld φ E 1
130 lencl W Word D W 0
131 nn0fz0 W 0 W 0 W
132 131 biimpi W 0 W 0 W
133 18 130 132 3syl φ W 0 W
134 133 elfzelzd φ W
135 134 128 zsubcld φ W 1
136 109 nnred φ E
137 134 zred φ W
138 1red φ 1
139 elfzle2 E 0 W E W
140 41 139 syl φ E W
141 136 137 138 140 lesub1dd φ E 1 W 1
142 eluz E 1 W 1 W 1 E 1 E 1 W 1
143 142 biimpar E 1 W 1 E 1 W 1 W 1 E 1
144 129 135 141 143 syl21anc φ W 1 E 1
145 fzoss2 W 1 E 1 0 ..^ E 1 0 ..^ W 1
146 144 145 syl φ 0 ..^ E 1 0 ..^ W 1
147 146 122 sseldd φ U -1 K 0 ..^ W 1
148 76 147 eqeltrrd φ W -1 K 0 ..^ W 1
149 1 3 18 31 148 cycpmfv1 φ M W W W -1 K = W W -1 K + 1
150 98 fveq2d φ M W W W -1 K = M W K
151 127 149 150 3eqtr2rd φ M W K = U W -1 K + 1
152 79 151 eqtr4d φ M U K = M W K