Metamath Proof Explorer


Theorem dchrabs

Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrabs.g G=DChrN
dchrabs.d D=BaseG
dchrabs.x φXD
dchrabs.z Z=/N
dchrabs.u U=UnitZ
dchrabs.a φAU
Assertion dchrabs φXA=1

Proof

Step Hyp Ref Expression
1 dchrabs.g G=DChrN
2 dchrabs.d D=BaseG
3 dchrabs.x φXD
4 dchrabs.z Z=/N
5 dchrabs.u U=UnitZ
6 dchrabs.a φAU
7 eqid BaseZ=BaseZ
8 1 4 2 7 3 dchrf φX:BaseZ
9 7 5 unitss UBaseZ
10 9 6 sselid φABaseZ
11 8 10 ffvelcdmd φXA
12 1 4 2 7 5 3 10 dchrn0 φXA0AU
13 6 12 mpbird φXA0
14 11 13 absrpcld φXA+
15 1 2 dchrrcl XDN
16 4 7 znfi NBaseZFin
17 3 15 16 3syl φBaseZFin
18 ssfi BaseZFinUBaseZUFin
19 17 9 18 sylancl φUFin
20 hashcl UFinU0
21 19 20 syl φU0
22 21 nn0red φU
23 22 recnd φU
24 6 ne0d φU
25 hashnncl UFinUU
26 19 25 syl φUU
27 24 26 mpbird φU
28 27 nnne0d φU0
29 23 28 reccld φ1U
30 14 22 29 cxpmuld φXAU1U=XAU1U
31 23 28 recidd φU1U=1
32 31 oveq2d φXAU1U=XA1
33 11 abscld φXA
34 33 recnd φXA
35 cxpexp XAU0XAU=XAU
36 34 21 35 syl2anc φXAU=XAU
37 11 21 absexpd φXAU=XAU
38 cnring fldRing
39 cnfldbas =Basefld
40 cnfld0 0=0fld
41 cndrng fldDivRing
42 39 40 41 drngui 0=Unitfld
43 eqid mulGrpfld=mulGrpfld
44 42 43 unitsubm fldRing0SubMndmulGrpfld
45 38 44 mp1i φ0SubMndmulGrpfld
46 eldifsn XA0XAXA0
47 11 13 46 sylanbrc φXA0
48 eqid mulGrpfld=mulGrpfld
49 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
50 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
51 48 49 50 submmulg 0SubMndmulGrpfldU0XA0UmulGrpfldXA=UmulGrpfld𝑠0XA
52 45 21 47 51 syl3anc φUmulGrpfldXA=UmulGrpfld𝑠0XA
53 eqid mulGrpZ𝑠U=mulGrpZ𝑠U
54 1 4 2 5 53 49 3 dchrghm φXUmulGrpZ𝑠UGrpHommulGrpfld𝑠0
55 21 nn0zd φU
56 5 53 unitgrpbas U=BasemulGrpZ𝑠U
57 eqid mulGrpZ𝑠U=mulGrpZ𝑠U
58 56 57 50 ghmmulg XUmulGrpZ𝑠UGrpHommulGrpfld𝑠0UAUXUUmulGrpZ𝑠UA=UmulGrpfld𝑠0XUA
59 54 55 6 58 syl3anc φXUUmulGrpZ𝑠UA=UmulGrpfld𝑠0XUA
60 3 15 syl φN
61 60 nnnn0d φN0
62 4 zncrng N0ZCRing
63 crngring ZCRingZRing
64 61 62 63 3syl φZRing
65 5 53 unitgrp ZRingmulGrpZ𝑠UGrp
66 64 65 syl φmulGrpZ𝑠UGrp
67 eqid odmulGrpZ𝑠U=odmulGrpZ𝑠U
68 56 67 oddvds2 mulGrpZ𝑠UGrpUFinAUodmulGrpZ𝑠UAU
69 66 19 6 68 syl3anc φodmulGrpZ𝑠UAU
70 eqid 0mulGrpZ𝑠U=0mulGrpZ𝑠U
71 56 67 57 70 oddvds mulGrpZ𝑠UGrpAUUodmulGrpZ𝑠UAUUmulGrpZ𝑠UA=0mulGrpZ𝑠U
72 66 6 55 71 syl3anc φodmulGrpZ𝑠UAUUmulGrpZ𝑠UA=0mulGrpZ𝑠U
73 69 72 mpbid φUmulGrpZ𝑠UA=0mulGrpZ𝑠U
74 eqid 1Z=1Z
75 5 53 74 unitgrpid ZRing1Z=0mulGrpZ𝑠U
76 64 75 syl φ1Z=0mulGrpZ𝑠U
77 73 76 eqtr4d φUmulGrpZ𝑠UA=1Z
78 77 fveq2d φXUUmulGrpZ𝑠UA=XU1Z
79 6 fvresd φXUA=XA
80 79 oveq2d φUmulGrpfld𝑠0XUA=UmulGrpfld𝑠0XA
81 59 78 80 3eqtr3d φXU1Z=UmulGrpfld𝑠0XA
82 5 74 1unit ZRing1ZU
83 fvres 1ZUXU1Z=X1Z
84 64 82 83 3syl φXU1Z=X1Z
85 52 81 84 3eqtr2d φUmulGrpfldXA=X1Z
86 cnfldexp XAU0UmulGrpfldXA=XAU
87 11 21 86 syl2anc φUmulGrpfldXA=XAU
88 1 4 2 dchrmhm DmulGrpZMndHommulGrpfld
89 88 3 sselid φXmulGrpZMndHommulGrpfld
90 eqid mulGrpZ=mulGrpZ
91 90 74 ringidval 1Z=0mulGrpZ
92 cnfld1 1=1fld
93 43 92 ringidval 1=0mulGrpfld
94 91 93 mhm0 XmulGrpZMndHommulGrpfldX1Z=1
95 89 94 syl φX1Z=1
96 85 87 95 3eqtr3d φXAU=1
97 96 fveq2d φXAU=1
98 abs1 1=1
99 97 98 eqtrdi φXAU=1
100 36 37 99 3eqtr2d φXAU=1
101 100 oveq1d φXAU1U=11U
102 30 32 101 3eqtr3d φXA1=11U
103 34 cxp1d φXA1=XA
104 29 1cxpd φ11U=1
105 102 103 104 3eqtr3d φXA=1