Metamath Proof Explorer


Theorem dchrabs

Description: A Dirichlet character takes values on the unit circle. (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses dchrabs.g G = DChr N
dchrabs.d D = Base G
dchrabs.x φ X D
dchrabs.z Z = /N
dchrabs.u U = Unit Z
dchrabs.a φ A U
Assertion dchrabs φ X A = 1

Proof

Step Hyp Ref Expression
1 dchrabs.g G = DChr N
2 dchrabs.d D = Base G
3 dchrabs.x φ X D
4 dchrabs.z Z = /N
5 dchrabs.u U = Unit Z
6 dchrabs.a φ A U
7 eqid Base Z = Base Z
8 1 4 2 7 3 dchrf φ X : Base Z
9 7 5 unitss U Base Z
10 9 6 sseldi φ A Base Z
11 8 10 ffvelrnd φ X A
12 1 4 2 7 5 3 10 dchrn0 φ X A 0 A U
13 6 12 mpbird φ X A 0
14 11 13 absrpcld φ X A +
15 1 2 dchrrcl X D N
16 4 7 znfi N Base Z Fin
17 3 15 16 3syl φ Base Z Fin
18 ssfi Base Z Fin U Base Z U Fin
19 17 9 18 sylancl φ U Fin
20 hashcl U Fin U 0
21 19 20 syl φ U 0
22 21 nn0red φ U
23 22 recnd φ U
24 6 ne0d φ U
25 hashnncl U Fin U U
26 19 25 syl φ U U
27 24 26 mpbird φ U
28 27 nnne0d φ U 0
29 23 28 reccld φ 1 U
30 14 22 29 cxpmuld φ X A U 1 U = X A U 1 U
31 23 28 recidd φ U 1 U = 1
32 31 oveq2d φ X A U 1 U = X A 1
33 11 abscld φ X A
34 33 recnd φ X A
35 cxpexp X A U 0 X A U = X A U
36 34 21 35 syl2anc φ X A U = X A U
37 11 21 absexpd φ X A U = X A U
38 cnring fld Ring
39 cnfldbas = Base fld
40 cnfld0 0 = 0 fld
41 cndrng fld DivRing
42 39 40 41 drngui 0 = Unit fld
43 eqid mulGrp fld = mulGrp fld
44 42 43 unitsubm fld Ring 0 SubMnd mulGrp fld
45 38 44 mp1i φ 0 SubMnd mulGrp fld
46 eldifsn X A 0 X A X A 0
47 11 13 46 sylanbrc φ X A 0
48 eqid mulGrp fld = mulGrp fld
49 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
50 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
51 48 49 50 submmulg 0 SubMnd mulGrp fld U 0 X A 0 U mulGrp fld X A = U mulGrp fld 𝑠 0 X A
52 45 21 47 51 syl3anc φ U mulGrp fld X A = U mulGrp fld 𝑠 0 X A
53 eqid mulGrp Z 𝑠 U = mulGrp Z 𝑠 U
54 1 4 2 5 53 49 3 dchrghm φ X U mulGrp Z 𝑠 U GrpHom mulGrp fld 𝑠 0
55 21 nn0zd φ U
56 5 53 unitgrpbas U = Base mulGrp Z 𝑠 U
57 eqid mulGrp Z 𝑠 U = mulGrp Z 𝑠 U
58 56 57 50 ghmmulg X U mulGrp Z 𝑠 U GrpHom mulGrp fld 𝑠 0 U A U X U U mulGrp Z 𝑠 U A = U mulGrp fld 𝑠 0 X U A
59 54 55 6 58 syl3anc φ X U U mulGrp Z 𝑠 U A = U mulGrp fld 𝑠 0 X U A
60 3 15 syl φ N
61 60 nnnn0d φ N 0
62 4 zncrng N 0 Z CRing
63 crngring Z CRing Z Ring
64 61 62 63 3syl φ Z Ring
65 5 53 unitgrp Z Ring mulGrp Z 𝑠 U Grp
66 64 65 syl φ mulGrp Z 𝑠 U Grp
67 eqid od mulGrp Z 𝑠 U = od mulGrp Z 𝑠 U
68 56 67 oddvds2 mulGrp Z 𝑠 U Grp U Fin A U od mulGrp Z 𝑠 U A U
69 66 19 6 68 syl3anc φ od mulGrp Z 𝑠 U A U
70 eqid 0 mulGrp Z 𝑠 U = 0 mulGrp Z 𝑠 U
71 56 67 57 70 oddvds mulGrp Z 𝑠 U Grp A U U od mulGrp Z 𝑠 U A U U mulGrp Z 𝑠 U A = 0 mulGrp Z 𝑠 U
72 66 6 55 71 syl3anc φ od mulGrp Z 𝑠 U A U U mulGrp Z 𝑠 U A = 0 mulGrp Z 𝑠 U
73 69 72 mpbid φ U mulGrp Z 𝑠 U A = 0 mulGrp Z 𝑠 U
74 eqid 1 Z = 1 Z
75 5 53 74 unitgrpid Z Ring 1 Z = 0 mulGrp Z 𝑠 U
76 64 75 syl φ 1 Z = 0 mulGrp Z 𝑠 U
77 73 76 eqtr4d φ U mulGrp Z 𝑠 U A = 1 Z
78 77 fveq2d φ X U U mulGrp Z 𝑠 U A = X U 1 Z
79 6 fvresd φ X U A = X A
80 79 oveq2d φ U mulGrp fld 𝑠 0 X U A = U mulGrp fld 𝑠 0 X A
81 59 78 80 3eqtr3d φ X U 1 Z = U mulGrp fld 𝑠 0 X A
82 5 74 1unit Z Ring 1 Z U
83 fvres 1 Z U X U 1 Z = X 1 Z
84 64 82 83 3syl φ X U 1 Z = X 1 Z
85 52 81 84 3eqtr2d φ U mulGrp fld X A = X 1 Z
86 cnfldexp X A U 0 U mulGrp fld X A = X A U
87 11 21 86 syl2anc φ U mulGrp fld X A = X A U
88 1 4 2 dchrmhm D mulGrp Z MndHom mulGrp fld
89 88 3 sseldi φ X mulGrp Z MndHom mulGrp fld
90 eqid mulGrp Z = mulGrp Z
91 90 74 ringidval 1 Z = 0 mulGrp Z
92 cnfld1 1 = 1 fld
93 43 92 ringidval 1 = 0 mulGrp fld
94 91 93 mhm0 X mulGrp Z MndHom mulGrp fld X 1 Z = 1
95 89 94 syl φ X 1 Z = 1
96 85 87 95 3eqtr3d φ X A U = 1
97 96 fveq2d φ X A U = 1
98 abs1 1 = 1
99 97 98 syl6eq φ X A U = 1
100 36 37 99 3eqtr2d φ X A U = 1
101 100 oveq1d φ X A U 1 U = 1 1 U
102 30 32 101 3eqtr3d φ X A 1 = 1 1 U
103 34 cxp1d φ X A 1 = X A
104 29 1cxpd φ 1 1 U = 1
105 102 103 104 3eqtr3d φ X A = 1