Step |
Hyp |
Ref |
Expression |
1 |
|
dibglb.g |
|
2 |
|
dibglb.h |
|
3 |
|
dibglb.i |
|
4 |
|
simpl |
|
5 |
|
simprl |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 7 2 3
|
dibdmN |
|
9 |
8
|
sseq2d |
|
10 |
9
|
adantr |
|
11 |
5 10
|
mpbid |
|
12 |
|
simprr |
|
13 |
2 3
|
dibvalrel |
|
14 |
13
|
adantr |
|
15 |
|
n0 |
|
16 |
15
|
biimpi |
|
17 |
16
|
ad2antll |
|
18 |
2 3
|
dibvalrel |
|
19 |
18
|
adantr |
|
20 |
19
|
a1d |
|
21 |
20
|
ancld |
|
22 |
21
|
eximdv |
|
23 |
17 22
|
mpd |
|
24 |
|
df-rex |
|
25 |
23 24
|
sylibr |
|
26 |
|
reliin |
|
27 |
25 26
|
syl |
|
28 |
|
id |
|
29 |
|
simpl |
|
30 |
|
simprl |
|
31 |
|
eqid |
|
32 |
6 7 2 31
|
diadm |
|
33 |
32
|
adantr |
|
34 |
30 33
|
sseqtrrd |
|
35 |
|
simprr |
|
36 |
1 2 31
|
diaglbN |
|
37 |
29 34 35 36
|
syl12anc |
|
38 |
37
|
eleq2d |
|
39 |
|
vex |
|
40 |
|
eliin |
|
41 |
39 40
|
ax-mp |
|
42 |
38 41
|
bitrdi |
|
43 |
42
|
anbi1d |
|
44 |
|
r19.27zv |
|
45 |
44
|
ad2antll |
|
46 |
43 45
|
bitr4d |
|
47 |
|
hlclat |
|
48 |
47
|
ad2antrr |
|
49 |
|
ssrab2 |
|
50 |
30 49
|
sstrdi |
|
51 |
6 1
|
clatglbcl |
|
52 |
48 50 51
|
syl2anc |
|
53 |
|
hllat |
|
54 |
53
|
ad3antrrr |
|
55 |
47
|
ad3antrrr |
|
56 |
|
simplrl |
|
57 |
56 49
|
sstrdi |
|
58 |
55 57 51
|
syl2anc |
|
59 |
50
|
sselda |
|
60 |
6 2
|
lhpbase |
|
61 |
60
|
ad3antlr |
|
62 |
|
simpr |
|
63 |
6 7 1
|
clatglble |
|
64 |
55 57 62 63
|
syl3anc |
|
65 |
30
|
sselda |
|
66 |
|
breq1 |
|
67 |
66
|
elrab |
|
68 |
65 67
|
sylib |
|
69 |
68
|
simprd |
|
70 |
6 7 54 58 59 61 64 69
|
lattrd |
|
71 |
17 70
|
exlimddv |
|
72 |
|
eqid |
|
73 |
|
eqid |
|
74 |
6 7 2 72 73 31 3
|
dibopelval2 |
|
75 |
29 52 71 74
|
syl12anc |
|
76 |
|
opex |
|
77 |
|
eliin |
|
78 |
76 77
|
ax-mp |
|
79 |
|
simpll |
|
80 |
6 7 2 72 73 31 3
|
dibopelval2 |
|
81 |
79 68 80
|
syl2anc |
|
82 |
81
|
ralbidva |
|
83 |
78 82
|
syl5bb |
|
84 |
46 75 83
|
3bitr4d |
|
85 |
84
|
eqrelrdv2 |
|
86 |
14 27 28 85
|
syl21anc |
|
87 |
4 11 12 86
|
syl12anc |
|