| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dibglb.g |  | 
						
							| 2 |  | dibglb.h |  | 
						
							| 3 |  | dibglb.i |  | 
						
							| 4 |  | simpl |  | 
						
							| 5 |  | simprl |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 6 7 2 3 | dibdmN |  | 
						
							| 9 | 8 | sseq2d |  | 
						
							| 10 | 9 | adantr |  | 
						
							| 11 | 5 10 | mpbid |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 | 2 3 | dibvalrel |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | n0 |  | 
						
							| 16 | 15 | biimpi |  | 
						
							| 17 | 16 | ad2antll |  | 
						
							| 18 | 2 3 | dibvalrel |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 | 19 | a1d |  | 
						
							| 21 | 20 | ancld |  | 
						
							| 22 | 21 | eximdv |  | 
						
							| 23 | 17 22 | mpd |  | 
						
							| 24 |  | df-rex |  | 
						
							| 25 | 23 24 | sylibr |  | 
						
							| 26 |  | reliin |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 |  | id |  | 
						
							| 29 |  | simpl |  | 
						
							| 30 |  | simprl |  | 
						
							| 31 |  | eqid |  | 
						
							| 32 | 6 7 2 31 | diadm |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 | 30 33 | sseqtrrd |  | 
						
							| 35 |  | simprr |  | 
						
							| 36 | 1 2 31 | diaglbN |  | 
						
							| 37 | 29 34 35 36 | syl12anc |  | 
						
							| 38 | 37 | eleq2d |  | 
						
							| 39 |  | vex |  | 
						
							| 40 |  | eliin |  | 
						
							| 41 | 39 40 | ax-mp |  | 
						
							| 42 | 38 41 | bitrdi |  | 
						
							| 43 | 42 | anbi1d |  | 
						
							| 44 |  | r19.27zv |  | 
						
							| 45 | 44 | ad2antll |  | 
						
							| 46 | 43 45 | bitr4d |  | 
						
							| 47 |  | hlclat |  | 
						
							| 48 | 47 | ad2antrr |  | 
						
							| 49 |  | ssrab2 |  | 
						
							| 50 | 30 49 | sstrdi |  | 
						
							| 51 | 6 1 | clatglbcl |  | 
						
							| 52 | 48 50 51 | syl2anc |  | 
						
							| 53 |  | hllat |  | 
						
							| 54 | 53 | ad3antrrr |  | 
						
							| 55 | 47 | ad3antrrr |  | 
						
							| 56 |  | simplrl |  | 
						
							| 57 | 56 49 | sstrdi |  | 
						
							| 58 | 55 57 51 | syl2anc |  | 
						
							| 59 | 50 | sselda |  | 
						
							| 60 | 6 2 | lhpbase |  | 
						
							| 61 | 60 | ad3antlr |  | 
						
							| 62 |  | simpr |  | 
						
							| 63 | 6 7 1 | clatglble |  | 
						
							| 64 | 55 57 62 63 | syl3anc |  | 
						
							| 65 | 30 | sselda |  | 
						
							| 66 |  | breq1 |  | 
						
							| 67 | 66 | elrab |  | 
						
							| 68 | 65 67 | sylib |  | 
						
							| 69 | 68 | simprd |  | 
						
							| 70 | 6 7 54 58 59 61 64 69 | lattrd |  | 
						
							| 71 | 17 70 | exlimddv |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 6 7 2 72 73 31 3 | dibopelval2 |  | 
						
							| 75 | 29 52 71 74 | syl12anc |  | 
						
							| 76 |  | opex |  | 
						
							| 77 |  | eliin |  | 
						
							| 78 | 76 77 | ax-mp |  | 
						
							| 79 |  | simpll |  | 
						
							| 80 | 6 7 2 72 73 31 3 | dibopelval2 |  | 
						
							| 81 | 79 68 80 | syl2anc |  | 
						
							| 82 | 81 | ralbidva |  | 
						
							| 83 | 78 82 | bitrid |  | 
						
							| 84 | 46 75 83 | 3bitr4d |  | 
						
							| 85 | 84 | eqrelrdv2 |  | 
						
							| 86 | 14 27 28 85 | syl21anc |  | 
						
							| 87 | 4 11 12 86 | syl12anc |  |