Metamath Proof Explorer


Theorem dibglbN

Description: Partial isomorphism B of a lattice glb. (Contributed by NM, 9-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibglb.g G=glbK
dibglb.h H=LHypK
dibglb.i I=DIsoBKW
Assertion dibglbN KHLWHSdomISIGS=xSIx

Proof

Step Hyp Ref Expression
1 dibglb.g G=glbK
2 dibglb.h H=LHypK
3 dibglb.i I=DIsoBKW
4 simpl KHLWHSdomISKHLWH
5 simprl KHLWHSdomISSdomI
6 eqid BaseK=BaseK
7 eqid K=K
8 6 7 2 3 dibdmN KHLWHdomI=yBaseK|yKW
9 8 sseq2d KHLWHSdomISyBaseK|yKW
10 9 adantr KHLWHSdomISSdomISyBaseK|yKW
11 5 10 mpbid KHLWHSdomISSyBaseK|yKW
12 simprr KHLWHSdomISS
13 2 3 dibvalrel KHLWHRelIGS
14 13 adantr KHLWHSyBaseK|yKWSRelIGS
15 n0 SxxS
16 15 biimpi SxxS
17 16 ad2antll KHLWHSyBaseK|yKWSxxS
18 2 3 dibvalrel KHLWHRelIx
19 18 adantr KHLWHSyBaseK|yKWSRelIx
20 19 a1d KHLWHSyBaseK|yKWSxSRelIx
21 20 ancld KHLWHSyBaseK|yKWSxSxSRelIx
22 21 eximdv KHLWHSyBaseK|yKWSxxSxxSRelIx
23 17 22 mpd KHLWHSyBaseK|yKWSxxSRelIx
24 df-rex xSRelIxxxSRelIx
25 23 24 sylibr KHLWHSyBaseK|yKWSxSRelIx
26 reliin xSRelIxRelxSIx
27 25 26 syl KHLWHSyBaseK|yKWSRelxSIx
28 id KHLWHSyBaseK|yKWSKHLWHSyBaseK|yKWS
29 simpl KHLWHSyBaseK|yKWSKHLWH
30 simprl KHLWHSyBaseK|yKWSSyBaseK|yKW
31 eqid DIsoAKW=DIsoAKW
32 6 7 2 31 diadm KHLWHdomDIsoAKW=yBaseK|yKW
33 32 adantr KHLWHSyBaseK|yKWSdomDIsoAKW=yBaseK|yKW
34 30 33 sseqtrrd KHLWHSyBaseK|yKWSSdomDIsoAKW
35 simprr KHLWHSyBaseK|yKWSS
36 1 2 31 diaglbN KHLWHSdomDIsoAKWSDIsoAKWGS=xSDIsoAKWx
37 29 34 35 36 syl12anc KHLWHSyBaseK|yKWSDIsoAKWGS=xSDIsoAKWx
38 37 eleq2d KHLWHSyBaseK|yKWSfDIsoAKWGSfxSDIsoAKWx
39 vex fV
40 eliin fVfxSDIsoAKWxxSfDIsoAKWx
41 39 40 ax-mp fxSDIsoAKWxxSfDIsoAKWx
42 38 41 bitrdi KHLWHSyBaseK|yKWSfDIsoAKWGSxSfDIsoAKWx
43 42 anbi1d KHLWHSyBaseK|yKWSfDIsoAKWGSs=hLTrnKWIBaseKxSfDIsoAKWxs=hLTrnKWIBaseK
44 r19.27zv SxSfDIsoAKWxs=hLTrnKWIBaseKxSfDIsoAKWxs=hLTrnKWIBaseK
45 44 ad2antll KHLWHSyBaseK|yKWSxSfDIsoAKWxs=hLTrnKWIBaseKxSfDIsoAKWxs=hLTrnKWIBaseK
46 43 45 bitr4d KHLWHSyBaseK|yKWSfDIsoAKWGSs=hLTrnKWIBaseKxSfDIsoAKWxs=hLTrnKWIBaseK
47 hlclat KHLKCLat
48 47 ad2antrr KHLWHSyBaseK|yKWSKCLat
49 ssrab2 yBaseK|yKWBaseK
50 30 49 sstrdi KHLWHSyBaseK|yKWSSBaseK
51 6 1 clatglbcl KCLatSBaseKGSBaseK
52 48 50 51 syl2anc KHLWHSyBaseK|yKWSGSBaseK
53 hllat KHLKLat
54 53 ad3antrrr KHLWHSyBaseK|yKWSxSKLat
55 47 ad3antrrr KHLWHSyBaseK|yKWSxSKCLat
56 simplrl KHLWHSyBaseK|yKWSxSSyBaseK|yKW
57 56 49 sstrdi KHLWHSyBaseK|yKWSxSSBaseK
58 55 57 51 syl2anc KHLWHSyBaseK|yKWSxSGSBaseK
59 50 sselda KHLWHSyBaseK|yKWSxSxBaseK
60 6 2 lhpbase WHWBaseK
61 60 ad3antlr KHLWHSyBaseK|yKWSxSWBaseK
62 simpr KHLWHSyBaseK|yKWSxSxS
63 6 7 1 clatglble KCLatSBaseKxSGSKx
64 55 57 62 63 syl3anc KHLWHSyBaseK|yKWSxSGSKx
65 30 sselda KHLWHSyBaseK|yKWSxSxyBaseK|yKW
66 breq1 y=xyKWxKW
67 66 elrab xyBaseK|yKWxBaseKxKW
68 65 67 sylib KHLWHSyBaseK|yKWSxSxBaseKxKW
69 68 simprd KHLWHSyBaseK|yKWSxSxKW
70 6 7 54 58 59 61 64 69 lattrd KHLWHSyBaseK|yKWSxSGSKW
71 17 70 exlimddv KHLWHSyBaseK|yKWSGSKW
72 eqid LTrnKW=LTrnKW
73 eqid hLTrnKWIBaseK=hLTrnKWIBaseK
74 6 7 2 72 73 31 3 dibopelval2 KHLWHGSBaseKGSKWfsIGSfDIsoAKWGSs=hLTrnKWIBaseK
75 29 52 71 74 syl12anc KHLWHSyBaseK|yKWSfsIGSfDIsoAKWGSs=hLTrnKWIBaseK
76 opex fsV
77 eliin fsVfsxSIxxSfsIx
78 76 77 ax-mp fsxSIxxSfsIx
79 simpll KHLWHSyBaseK|yKWSxSKHLWH
80 6 7 2 72 73 31 3 dibopelval2 KHLWHxBaseKxKWfsIxfDIsoAKWxs=hLTrnKWIBaseK
81 79 68 80 syl2anc KHLWHSyBaseK|yKWSxSfsIxfDIsoAKWxs=hLTrnKWIBaseK
82 81 ralbidva KHLWHSyBaseK|yKWSxSfsIxxSfDIsoAKWxs=hLTrnKWIBaseK
83 78 82 bitrid KHLWHSyBaseK|yKWSfsxSIxxSfDIsoAKWxs=hLTrnKWIBaseK
84 46 75 83 3bitr4d KHLWHSyBaseK|yKWSfsIGSfsxSIx
85 84 eqrelrdv2 RelIGSRelxSIxKHLWHSyBaseK|yKWSIGS=xSIx
86 14 27 28 85 syl21anc KHLWHSyBaseK|yKWSIGS=xSIx
87 4 11 12 86 syl12anc KHLWHSdomISIGS=xSIx