Metamath Proof Explorer


Theorem dignn0flhalflem1

Description: Lemma 1 for dignn0flhalf . (Contributed by AV, 7-Jun-2012)

Ref Expression
Assertion dignn0flhalflem1 AA12NA2N1<A12N

Proof

Step Hyp Ref Expression
1 zre AA
2 1 3ad2ant1 AA12NA
3 2rp 2+
4 3 a1i N2+
5 nnz NN
6 4 5 rpexpcld N2N+
7 6 rpred N2N
8 7 3ad2ant3 AA12N2N
9 2 8 resubcld AA12NA2N
10 6 3ad2ant3 AA12N2N+
11 9 10 modcld AA12NA2Nmod2N
12 9 11 resubcld AA12NA-2N-A2Nmod2N
13 peano2zm AA1
14 13 zred AA1
15 14 3ad2ant1 AA12NA1
16 15 10 modcld AA12NA1mod2N
17 15 16 resubcld AA12NA-1-A1mod2N
18 1red AA12N1
19 18 16 readdcld AA12N1+A1mod2N
20 8 11 readdcld AA12N2N+A2Nmod2N
21 2nn 2
22 21 a1i N2
23 nnnn0 NN0
24 22 23 nnexpcld N2N
25 24 anim2i ANA2N
26 25 3adant2 AA12NA2N
27 m1modmmod A2NA1mod2NAmod2N=ifAmod2N=02N11
28 26 27 syl AA12NA1mod2NAmod2N=ifAmod2N=02N11
29 nnz A12A12
30 29 a1i ANA12A12
31 zcn AA
32 xp1d2m1eqxm1d2 AA+121=A12
33 32 eqcomd AA12=A+121
34 31 33 syl AA12=A+121
35 34 adantr ANA12=A+121
36 35 eleq1d ANA12A+121
37 peano2z A+121A+12-1+1
38 31 adantr ANA
39 1cnd AN1
40 38 39 addcld ANA+1
41 40 halfcld ANA+12
42 41 39 npcand ANA+12-1+1=A+12
43 42 eleq1d ANA+12-1+1A+12
44 37 43 imbitrid ANA+121A+12
45 36 44 sylbid ANA12A+12
46 mod0 A2N+Amod2N=0A2N
47 1 6 46 syl2an ANAmod2N=0A2N
48 22 nnzd N2
49 nnm1nn0 NN10
50 zexpcl 2N102N1
51 48 49 50 syl2anc N2N1
52 51 adantl AN2N1
53 52 adantr ANA2N2N1
54 simpr ANA2NA2N
55 53 54 zmulcld ANA2N2N1A2N
56 55 ex ANA2N2N1A2N
57 5 adantl ANN
58 57 zcnd ANN
59 39 negcld AN1
60 58 39 negsubd ANN+-1=N1
61 60 eqcomd ANN1=N+-1
62 58 59 61 mvrladdd ANN-1-N=1
63 62 oveq2d AN2N-1-N=21
64 2cnd AN2
65 2ne0 20
66 65 a1i AN20
67 1zzd N1
68 5 67 zsubcld NN1
69 68 5 jca NN1N
70 69 adantl ANN1N
71 expsub 220N1N2N-1-N=2N12N
72 64 66 70 71 syl21anc AN2N-1-N=2N12N
73 expn1 221=12
74 64 73 syl AN21=12
75 63 72 74 3eqtr3d AN2N12N=12
76 75 oveq2d ANA2N12N=A12
77 2cnd N2
78 77 49 expcld N2N1
79 78 adantl AN2N1
80 3 a1i AN2+
81 80 57 rpexpcld AN2N+
82 81 rpcnne0d AN2N2N0
83 div12 2N1A2N2N02N1A2N=A2N12N
84 79 38 82 83 syl3anc AN2N1A2N=A2N12N
85 38 64 66 divrecd ANA2=A12
86 76 84 85 3eqtr4d AN2N1A2N=A2
87 86 eleq1d AN2N1A2NA2
88 56 87 sylibd ANA2NA2
89 47 88 sylbid ANAmod2N=0A2
90 zeo2 AA2¬A+12
91 90 adantr ANA2¬A+12
92 89 91 sylibd ANAmod2N=0¬A+12
93 92 necon2ad ANA+12Amod2N0
94 30 45 93 3syld ANA12Amod2N0
95 94 ex ANA12Amod2N0
96 95 com23 AA12NAmod2N0
97 96 3imp AA12NAmod2N0
98 97 neneqd AA12N¬Amod2N=0
99 98 iffalsed AA12NifAmod2N=02N11=1
100 28 99 eqtrd AA12NA1mod2NAmod2N=1
101 neg1lt0 1<0
102 2re 2
103 1lt2 1<2
104 expgt1 2N1<21<2N
105 102 103 104 mp3an13 N1<2N
106 1red N1
107 106 7 posdifd N1<2N0<2N1
108 105 107 mpbid N0<2N1
109 106 renegcld N1
110 0red N0
111 7 106 resubcld N2N1
112 lttr 102N11<00<2N11<2N1
113 109 110 111 112 syl3anc N1<00<2N11<2N1
114 108 113 mpan2d N1<01<2N1
115 101 114 mpi N1<2N1
116 115 3ad2ant3 AA12N1<2N1
117 100 116 eqbrtrd AA12NA1mod2NAmod2N<2N1
118 2 10 modcld AA12NAmod2N
119 ltsubadd2b 12NAmod2NA1mod2NA1mod2NAmod2N<2N11+A1mod2N<2N+Amod2N
120 18 8 118 16 119 syl22anc AA12NA1mod2NAmod2N<2N11+A1mod2N<2N+Amod2N
121 117 120 mpbid AA12N1+A1mod2N<2N+Amod2N
122 modid0 2N+2Nmod2N=0
123 10 122 syl AA12N2Nmod2N=0
124 123 oveq2d AA12NAmod2N2Nmod2N=Amod2N0
125 118 recnd AA12NAmod2N
126 125 subid1d AA12NAmod2N0=Amod2N
127 124 126 eqtrd AA12NAmod2N2Nmod2N=Amod2N
128 127 oveq1d AA12NAmod2N2Nmod2Nmod2N=Amod2Nmod2N
129 modsubmodmod A2N2N+Amod2N2Nmod2Nmod2N=A2Nmod2N
130 2 8 10 129 syl3anc AA12NAmod2N2Nmod2Nmod2N=A2Nmod2N
131 modabs2 A2N+Amod2Nmod2N=Amod2N
132 2 10 131 syl2anc AA12NAmod2Nmod2N=Amod2N
133 128 130 132 3eqtr3d AA12NA2Nmod2N=Amod2N
134 133 oveq2d AA12N2N+A2Nmod2N=2N+Amod2N
135 121 134 breqtrrd AA12N1+A1mod2N<2N+A2Nmod2N
136 19 20 2 135 ltsub2dd AA12NA2N+A2Nmod2N<A1+A1mod2N
137 31 3ad2ant1 AA12NA
138 8 recnd AA12N2N
139 11 recnd AA12NA2Nmod2N
140 137 138 139 subsub4d AA12NA-2N-A2Nmod2N=A2N+A2Nmod2N
141 1cnd AA12N1
142 16 recnd AA12NA1mod2N
143 137 141 142 subsub4d AA12NA-1-A1mod2N=A1+A1mod2N
144 136 140 143 3brtr4d AA12NA-2N-A2Nmod2N<A-1-A1mod2N
145 12 17 10 144 ltdiv1dd AA12NA-2N-A2Nmod2N2N<A-1-A1mod2N2N
146 7 recnd N2N
147 146 3ad2ant3 AA12N2N
148 65 a1i N20
149 77 148 5 expne0d N2N0
150 149 3ad2ant3 AA12N2N0
151 divsub1dir A2N2N0A2N1=A2N2N
152 151 fveq2d A2N2N0A2N1=A2N2N
153 137 147 150 152 syl3anc AA12NA2N1=A2N2N
154 fldivmod A2N2N+A2N2N=A-2N-A2Nmod2N2N
155 9 10 154 syl2anc AA12NA2N2N=A-2N-A2Nmod2N2N
156 153 155 eqtrd AA12NA2N1=A-2N-A2Nmod2N2N
157 fldivmod A12N+A12N=A-1-A1mod2N2N
158 15 10 157 syl2anc AA12NA12N=A-1-A1mod2N2N
159 145 156 158 3brtr4d AA12NA2N1<A12N