Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Complexity theory
Nonnegative integer as sum of its shifted digits
dignn0flhalflem1
Next ⟩
dignn0flhalflem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
dignn0flhalflem1
Description:
Lemma 1 for
dignn0flhalf
.
(Contributed by
AV
, 7-Jun-2012)
Ref
Expression
Assertion
dignn0flhalflem1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
2
N
−
1
<
A
−
1
2
N
Proof
Step
Hyp
Ref
Expression
1
zre
⊢
A
∈
ℤ
→
A
∈
ℝ
2
1
3ad2ant1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
∈
ℝ
3
2rp
⊢
2
∈
ℝ
+
4
3
a1i
⊢
N
∈
ℕ
→
2
∈
ℝ
+
5
nnz
⊢
N
∈
ℕ
→
N
∈
ℤ
6
4
5
rpexpcld
⊢
N
∈
ℕ
→
2
N
∈
ℝ
+
7
6
rpred
⊢
N
∈
ℕ
→
2
N
∈
ℝ
8
7
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℝ
9
2
8
resubcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
∈
ℝ
10
6
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℝ
+
11
9
10
modcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
mod
2
N
∈
ℝ
12
9
11
resubcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
2
N
-
A
−
2
N
mod
2
N
∈
ℝ
13
peano2zm
⊢
A
∈
ℤ
→
A
−
1
∈
ℤ
14
13
zred
⊢
A
∈
ℤ
→
A
−
1
∈
ℝ
15
14
3ad2ant1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
∈
ℝ
16
15
10
modcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
∈
ℝ
17
15
16
resubcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
1
-
A
−
1
mod
2
N
∈
ℝ
18
1red
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
1
∈
ℝ
19
18
16
readdcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
1
+
A
−
1
mod
2
N
∈
ℝ
20
8
11
readdcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
+
A
−
2
N
mod
2
N
∈
ℝ
21
2nn
⊢
2
∈
ℕ
22
21
a1i
⊢
N
∈
ℕ
→
2
∈
ℕ
23
nnnn0
⊢
N
∈
ℕ
→
N
∈
ℕ
0
24
22
23
nnexpcld
⊢
N
∈
ℕ
→
2
N
∈
ℕ
25
24
anim2i
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
∈
ℤ
∧
2
N
∈
ℕ
26
25
3adant2
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
∈
ℤ
∧
2
N
∈
ℕ
27
m1modmmod
⊢
A
∈
ℤ
∧
2
N
∈
ℕ
→
A
−
1
mod
2
N
−
A
mod
2
N
=
if
A
mod
2
N
=
0
2
N
−
1
−
1
28
26
27
syl
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
−
A
mod
2
N
=
if
A
mod
2
N
=
0
2
N
−
1
−
1
29
nnz
⊢
A
−
1
2
∈
ℕ
→
A
−
1
2
∈
ℤ
30
29
a1i
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
−
1
2
∈
ℕ
→
A
−
1
2
∈
ℤ
31
zcn
⊢
A
∈
ℤ
→
A
∈
ℂ
32
xp1d2m1eqxm1d2
⊢
A
∈
ℂ
→
A
+
1
2
−
1
=
A
−
1
2
33
32
eqcomd
⊢
A
∈
ℂ
→
A
−
1
2
=
A
+
1
2
−
1
34
31
33
syl
⊢
A
∈
ℤ
→
A
−
1
2
=
A
+
1
2
−
1
35
34
adantr
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
−
1
2
=
A
+
1
2
−
1
36
35
eleq1d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
−
1
2
∈
ℤ
↔
A
+
1
2
−
1
∈
ℤ
37
peano2z
⊢
A
+
1
2
−
1
∈
ℤ
→
A
+
1
2
-
1
+
1
∈
ℤ
38
31
adantr
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
∈
ℂ
39
1cnd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
1
∈
ℂ
40
38
39
addcld
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
∈
ℂ
41
40
halfcld
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
2
∈
ℂ
42
41
39
npcand
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
2
-
1
+
1
=
A
+
1
2
43
42
eleq1d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
2
-
1
+
1
∈
ℤ
↔
A
+
1
2
∈
ℤ
44
37
43
imbitrid
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
2
−
1
∈
ℤ
→
A
+
1
2
∈
ℤ
45
36
44
sylbid
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
−
1
2
∈
ℤ
→
A
+
1
2
∈
ℤ
46
mod0
⊢
A
∈
ℝ
∧
2
N
∈
ℝ
+
→
A
mod
2
N
=
0
↔
A
2
N
∈
ℤ
47
1
6
46
syl2an
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
mod
2
N
=
0
↔
A
2
N
∈
ℤ
48
22
nnzd
⊢
N
∈
ℕ
→
2
∈
ℤ
49
nnm1nn0
⊢
N
∈
ℕ
→
N
−
1
∈
ℕ
0
50
zexpcl
⊢
2
∈
ℤ
∧
N
−
1
∈
ℕ
0
→
2
N
−
1
∈
ℤ
51
48
49
50
syl2anc
⊢
N
∈
ℕ
→
2
N
−
1
∈
ℤ
52
51
adantl
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
∈
ℤ
53
52
adantr
⊢
A
∈
ℤ
∧
N
∈
ℕ
∧
A
2
N
∈
ℤ
→
2
N
−
1
∈
ℤ
54
simpr
⊢
A
∈
ℤ
∧
N
∈
ℕ
∧
A
2
N
∈
ℤ
→
A
2
N
∈
ℤ
55
53
54
zmulcld
⊢
A
∈
ℤ
∧
N
∈
ℕ
∧
A
2
N
∈
ℤ
→
2
N
−
1
A
2
N
∈
ℤ
56
55
ex
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
2
N
∈
ℤ
→
2
N
−
1
A
2
N
∈
ℤ
57
5
adantl
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
∈
ℤ
58
57
zcnd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
∈
ℂ
59
39
negcld
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
−
1
∈
ℂ
60
58
39
negsubd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
+
-1
=
N
−
1
61
60
eqcomd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
−
1
=
N
+
-1
62
58
59
61
mvrladdd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
-
1
-
N
=
−
1
63
62
oveq2d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
-
1
-
N
=
2
−
1
64
2cnd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
∈
ℂ
65
2ne0
⊢
2
≠
0
66
65
a1i
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
≠
0
67
1zzd
⊢
N
∈
ℕ
→
1
∈
ℤ
68
5
67
zsubcld
⊢
N
∈
ℕ
→
N
−
1
∈
ℤ
69
68
5
jca
⊢
N
∈
ℕ
→
N
−
1
∈
ℤ
∧
N
∈
ℤ
70
69
adantl
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
N
−
1
∈
ℤ
∧
N
∈
ℤ
71
expsub
⊢
2
∈
ℂ
∧
2
≠
0
∧
N
−
1
∈
ℤ
∧
N
∈
ℤ
→
2
N
-
1
-
N
=
2
N
−
1
2
N
72
64
66
70
71
syl21anc
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
-
1
-
N
=
2
N
−
1
2
N
73
expn1
⊢
2
∈
ℂ
→
2
−
1
=
1
2
74
64
73
syl
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
−
1
=
1
2
75
63
72
74
3eqtr3d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
2
N
=
1
2
76
75
oveq2d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
2
N
−
1
2
N
=
A
1
2
77
2cnd
⊢
N
∈
ℕ
→
2
∈
ℂ
78
77
49
expcld
⊢
N
∈
ℕ
→
2
N
−
1
∈
ℂ
79
78
adantl
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
∈
ℂ
80
3
a1i
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
∈
ℝ
+
81
80
57
rpexpcld
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
∈
ℝ
+
82
81
rpcnne0d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
∈
ℂ
∧
2
N
≠
0
83
div12
⊢
2
N
−
1
∈
ℂ
∧
A
∈
ℂ
∧
2
N
∈
ℂ
∧
2
N
≠
0
→
2
N
−
1
A
2
N
=
A
2
N
−
1
2
N
84
79
38
82
83
syl3anc
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
A
2
N
=
A
2
N
−
1
2
N
85
38
64
66
divrecd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
2
=
A
1
2
86
76
84
85
3eqtr4d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
A
2
N
=
A
2
87
86
eleq1d
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
2
N
−
1
A
2
N
∈
ℤ
↔
A
2
∈
ℤ
88
56
87
sylibd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
2
N
∈
ℤ
→
A
2
∈
ℤ
89
47
88
sylbid
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
mod
2
N
=
0
→
A
2
∈
ℤ
90
zeo2
⊢
A
∈
ℤ
→
A
2
∈
ℤ
↔
¬
A
+
1
2
∈
ℤ
91
90
adantr
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
2
∈
ℤ
↔
¬
A
+
1
2
∈
ℤ
92
89
91
sylibd
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
mod
2
N
=
0
→
¬
A
+
1
2
∈
ℤ
93
92
necon2ad
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
+
1
2
∈
ℤ
→
A
mod
2
N
≠
0
94
30
45
93
3syld
⊢
A
∈
ℤ
∧
N
∈
ℕ
→
A
−
1
2
∈
ℕ
→
A
mod
2
N
≠
0
95
94
ex
⊢
A
∈
ℤ
→
N
∈
ℕ
→
A
−
1
2
∈
ℕ
→
A
mod
2
N
≠
0
96
95
com23
⊢
A
∈
ℤ
→
A
−
1
2
∈
ℕ
→
N
∈
ℕ
→
A
mod
2
N
≠
0
97
96
3imp
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
≠
0
98
97
neneqd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
¬
A
mod
2
N
=
0
99
98
iffalsed
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
if
A
mod
2
N
=
0
2
N
−
1
−
1
=
−
1
100
28
99
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
−
A
mod
2
N
=
−
1
101
neg1lt0
⊢
−
1
<
0
102
2re
⊢
2
∈
ℝ
103
1lt2
⊢
1
<
2
104
expgt1
⊢
2
∈
ℝ
∧
N
∈
ℕ
∧
1
<
2
→
1
<
2
N
105
102
103
104
mp3an13
⊢
N
∈
ℕ
→
1
<
2
N
106
1red
⊢
N
∈
ℕ
→
1
∈
ℝ
107
106
7
posdifd
⊢
N
∈
ℕ
→
1
<
2
N
↔
0
<
2
N
−
1
108
105
107
mpbid
⊢
N
∈
ℕ
→
0
<
2
N
−
1
109
106
renegcld
⊢
N
∈
ℕ
→
−
1
∈
ℝ
110
0red
⊢
N
∈
ℕ
→
0
∈
ℝ
111
7
106
resubcld
⊢
N
∈
ℕ
→
2
N
−
1
∈
ℝ
112
lttr
⊢
−
1
∈
ℝ
∧
0
∈
ℝ
∧
2
N
−
1
∈
ℝ
→
−
1
<
0
∧
0
<
2
N
−
1
→
−
1
<
2
N
−
1
113
109
110
111
112
syl3anc
⊢
N
∈
ℕ
→
−
1
<
0
∧
0
<
2
N
−
1
→
−
1
<
2
N
−
1
114
108
113
mpan2d
⊢
N
∈
ℕ
→
−
1
<
0
→
−
1
<
2
N
−
1
115
101
114
mpi
⊢
N
∈
ℕ
→
−
1
<
2
N
−
1
116
115
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
−
1
<
2
N
−
1
117
100
116
eqbrtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
−
A
mod
2
N
<
2
N
−
1
118
2
10
modcld
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
∈
ℝ
119
ltsubadd2b
⊢
1
∈
ℝ
∧
2
N
∈
ℝ
∧
A
mod
2
N
∈
ℝ
∧
A
−
1
mod
2
N
∈
ℝ
→
A
−
1
mod
2
N
−
A
mod
2
N
<
2
N
−
1
↔
1
+
A
−
1
mod
2
N
<
2
N
+
A
mod
2
N
120
18
8
118
16
119
syl22anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
−
A
mod
2
N
<
2
N
−
1
↔
1
+
A
−
1
mod
2
N
<
2
N
+
A
mod
2
N
121
117
120
mpbid
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
1
+
A
−
1
mod
2
N
<
2
N
+
A
mod
2
N
122
modid0
⊢
2
N
∈
ℝ
+
→
2
N
mod
2
N
=
0
123
10
122
syl
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
mod
2
N
=
0
124
123
oveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
−
2
N
mod
2
N
=
A
mod
2
N
−
0
125
118
recnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
∈
ℂ
126
125
subid1d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
−
0
=
A
mod
2
N
127
124
126
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
−
2
N
mod
2
N
=
A
mod
2
N
128
127
oveq1d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
−
2
N
mod
2
N
mod
2
N
=
A
mod
2
N
mod
2
N
129
modsubmodmod
⊢
A
∈
ℝ
∧
2
N
∈
ℝ
∧
2
N
∈
ℝ
+
→
A
mod
2
N
−
2
N
mod
2
N
mod
2
N
=
A
−
2
N
mod
2
N
130
2
8
10
129
syl3anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
−
2
N
mod
2
N
mod
2
N
=
A
−
2
N
mod
2
N
131
modabs2
⊢
A
∈
ℝ
∧
2
N
∈
ℝ
+
→
A
mod
2
N
mod
2
N
=
A
mod
2
N
132
2
10
131
syl2anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
mod
2
N
mod
2
N
=
A
mod
2
N
133
128
130
132
3eqtr3d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
mod
2
N
=
A
mod
2
N
134
133
oveq2d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
+
A
−
2
N
mod
2
N
=
2
N
+
A
mod
2
N
135
121
134
breqtrrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
1
+
A
−
1
mod
2
N
<
2
N
+
A
−
2
N
mod
2
N
136
19
20
2
135
ltsub2dd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
+
A
−
2
N
mod
2
N
<
A
−
1
+
A
−
1
mod
2
N
137
31
3ad2ant1
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
∈
ℂ
138
8
recnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℂ
139
11
recnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
mod
2
N
∈
ℂ
140
137
138
139
subsub4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
2
N
-
A
−
2
N
mod
2
N
=
A
−
2
N
+
A
−
2
N
mod
2
N
141
1cnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
1
∈
ℂ
142
16
recnd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
mod
2
N
∈
ℂ
143
137
141
142
subsub4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
1
-
A
−
1
mod
2
N
=
A
−
1
+
A
−
1
mod
2
N
144
136
140
143
3brtr4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
2
N
-
A
−
2
N
mod
2
N
<
A
-
1
-
A
−
1
mod
2
N
145
12
17
10
144
ltdiv1dd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
-
2
N
-
A
−
2
N
mod
2
N
2
N
<
A
-
1
-
A
−
1
mod
2
N
2
N
146
7
recnd
⊢
N
∈
ℕ
→
2
N
∈
ℂ
147
146
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
∈
ℂ
148
65
a1i
⊢
N
∈
ℕ
→
2
≠
0
149
77
148
5
expne0d
⊢
N
∈
ℕ
→
2
N
≠
0
150
149
3ad2ant3
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
2
N
≠
0
151
divsub1dir
⊢
A
∈
ℂ
∧
2
N
∈
ℂ
∧
2
N
≠
0
→
A
2
N
−
1
=
A
−
2
N
2
N
152
151
fveq2d
⊢
A
∈
ℂ
∧
2
N
∈
ℂ
∧
2
N
≠
0
→
A
2
N
−
1
=
A
−
2
N
2
N
153
137
147
150
152
syl3anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
2
N
−
1
=
A
−
2
N
2
N
154
fldivmod
⊢
A
−
2
N
∈
ℝ
∧
2
N
∈
ℝ
+
→
A
−
2
N
2
N
=
A
-
2
N
-
A
−
2
N
mod
2
N
2
N
155
9
10
154
syl2anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
2
N
2
N
=
A
-
2
N
-
A
−
2
N
mod
2
N
2
N
156
153
155
eqtrd
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
2
N
−
1
=
A
-
2
N
-
A
−
2
N
mod
2
N
2
N
157
fldivmod
⊢
A
−
1
∈
ℝ
∧
2
N
∈
ℝ
+
→
A
−
1
2
N
=
A
-
1
-
A
−
1
mod
2
N
2
N
158
15
10
157
syl2anc
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
−
1
2
N
=
A
-
1
-
A
−
1
mod
2
N
2
N
159
145
156
158
3brtr4d
⊢
A
∈
ℤ
∧
A
−
1
2
∈
ℕ
∧
N
∈
ℕ
→
A
2
N
−
1
<
A
−
1
2
N