| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpjfval.1 |  | 
						
							| 2 |  | dpjfval.2 |  | 
						
							| 3 |  | dpjfval.p |  | 
						
							| 4 |  | dpjidcl.3 |  | 
						
							| 5 |  | dpjidcl.0 |  | 
						
							| 6 |  | dpjidcl.w |  | 
						
							| 7 | 5 6 | eldprd |  | 
						
							| 8 | 2 7 | syl |  | 
						
							| 9 | 4 8 | mpbid |  | 
						
							| 10 | 9 | simprd |  | 
						
							| 11 | 1 | adantr |  | 
						
							| 12 | 2 | adantr |  | 
						
							| 13 | 1 | ad2antrr |  | 
						
							| 14 | 2 | ad2antrr |  | 
						
							| 15 |  | simpr |  | 
						
							| 16 | 13 14 3 15 | dpjf |  | 
						
							| 17 | 4 | ad2antrr |  | 
						
							| 18 | 16 17 | ffvelcdmd |  | 
						
							| 19 | 1 2 | dprddomcld |  | 
						
							| 20 | 19 | mptexd |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 |  | funmpt |  | 
						
							| 23 | 22 | a1i |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 | 6 11 12 24 | dprdffsupp |  | 
						
							| 26 |  | eldifi |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 13 14 3 27 15 | dpjval |  | 
						
							| 29 | 28 | fveq1d |  | 
						
							| 30 | 26 29 | sylan2 |  | 
						
							| 31 |  | simplrr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | dprdgrp |  | 
						
							| 35 |  | grpmnd |  | 
						
							| 36 | 11 34 35 | 3syl |  | 
						
							| 37 | 36 | adantr |  | 
						
							| 38 | 19 | ad2antrr |  | 
						
							| 39 | 6 11 12 24 32 | dprdff |  | 
						
							| 40 | 39 | adantr |  | 
						
							| 41 | 24 | adantr |  | 
						
							| 42 | 6 13 14 41 33 | dprdfcntz |  | 
						
							| 43 | 26 42 | sylan2 |  | 
						
							| 44 |  | snssi |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 45 | difss2d |  | 
						
							| 47 |  | suppssdm |  | 
						
							| 48 | 47 39 | fssdm |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 |  | ssconb |  | 
						
							| 51 | 46 49 50 | syl2anc |  | 
						
							| 52 | 45 51 | mpbid |  | 
						
							| 53 | 25 | adantr |  | 
						
							| 54 | 32 5 33 37 38 40 43 52 53 | gsumzres |  | 
						
							| 55 | 31 54 | eqtr4d |  | 
						
							| 56 |  | eqid |  | 
						
							| 57 |  | difss |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 13 14 58 | dprdres |  | 
						
							| 60 | 59 | simpld |  | 
						
							| 61 | 13 14 | dprdf2 |  | 
						
							| 62 |  | fssres |  | 
						
							| 63 | 61 57 62 | sylancl |  | 
						
							| 64 | 63 | fdmd |  | 
						
							| 65 | 39 | adantr |  | 
						
							| 66 | 65 | feqmptd |  | 
						
							| 67 | 66 | reseq1d |  | 
						
							| 68 |  | resmpt |  | 
						
							| 69 | 57 68 | ax-mp |  | 
						
							| 70 | 67 69 | eqtrdi |  | 
						
							| 71 |  | eldifi |  | 
						
							| 72 | 6 13 14 41 | dprdfcl |  | 
						
							| 73 | 71 72 | sylan2 |  | 
						
							| 74 |  | fvres |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 | 73 75 | eleqtrrd |  | 
						
							| 77 | 19 | difexd |  | 
						
							| 78 | 77 | mptexd |  | 
						
							| 79 | 78 | ad2antrr |  | 
						
							| 80 |  | funmpt |  | 
						
							| 81 | 80 | a1i |  | 
						
							| 82 | 25 | adantr |  | 
						
							| 83 |  | ssdif |  | 
						
							| 84 | 57 83 | ax-mp |  | 
						
							| 85 | 84 | sseli |  | 
						
							| 86 |  | ssidd |  | 
						
							| 87 | 19 | ad2antrr |  | 
						
							| 88 | 5 | fvexi |  | 
						
							| 89 | 88 | a1i |  | 
						
							| 90 | 65 86 87 89 | suppssr |  | 
						
							| 91 | 85 90 | sylan2 |  | 
						
							| 92 | 77 | ad2antrr |  | 
						
							| 93 | 91 92 | suppss2 |  | 
						
							| 94 |  | fsuppsssupp |  | 
						
							| 95 | 79 81 82 93 94 | syl22anc |  | 
						
							| 96 | 56 60 64 76 95 | dprdwd |  | 
						
							| 97 | 70 96 | eqeltrd |  | 
						
							| 98 | 5 56 60 64 97 | eldprdi |  | 
						
							| 99 | 26 98 | sylan2 |  | 
						
							| 100 | 55 99 | eqeltrd |  | 
						
							| 101 |  | eqid |  | 
						
							| 102 |  | eqid |  | 
						
							| 103 | 61 15 | ffvelcdmd |  | 
						
							| 104 |  | dprdsubg |  | 
						
							| 105 | 60 104 | syl |  | 
						
							| 106 | 13 14 15 5 | dpjdisj |  | 
						
							| 107 | 13 14 15 33 | dpjcntz |  | 
						
							| 108 | 101 102 5 33 103 105 106 107 27 | pj1rid |  | 
						
							| 109 | 26 108 | sylanl2 |  | 
						
							| 110 | 100 109 | mpdan |  | 
						
							| 111 | 30 110 | eqtrd |  | 
						
							| 112 | 19 | adantr |  | 
						
							| 113 | 111 112 | suppss2 |  | 
						
							| 114 |  | fsuppsssupp |  | 
						
							| 115 | 21 23 25 113 114 | syl22anc |  | 
						
							| 116 | 6 11 12 18 115 | dprdwd |  | 
						
							| 117 |  | simprr |  | 
						
							| 118 | 39 | feqmptd |  | 
						
							| 119 |  | simplrr |  | 
						
							| 120 | 13 34 35 | 3syl |  | 
						
							| 121 | 6 13 14 41 | dprdffsupp |  | 
						
							| 122 |  | disjdif |  | 
						
							| 123 | 122 | a1i |  | 
						
							| 124 |  | undif2 |  | 
						
							| 125 | 15 | snssd |  | 
						
							| 126 |  | ssequn1 |  | 
						
							| 127 | 125 126 | sylib |  | 
						
							| 128 | 124 127 | eqtr2id |  | 
						
							| 129 | 32 5 101 33 120 87 65 42 121 123 128 | gsumzsplit |  | 
						
							| 130 | 65 125 | feqresmpt |  | 
						
							| 131 | 130 | oveq2d |  | 
						
							| 132 | 65 15 | ffvelcdmd |  | 
						
							| 133 |  | fveq2 |  | 
						
							| 134 | 32 133 | gsumsn |  | 
						
							| 135 | 120 15 132 134 | syl3anc |  | 
						
							| 136 | 131 135 | eqtrd |  | 
						
							| 137 | 136 | oveq1d |  | 
						
							| 138 | 119 129 137 | 3eqtrd |  | 
						
							| 139 | 13 14 15 102 | dpjlsm |  | 
						
							| 140 | 17 139 | eleqtrd |  | 
						
							| 141 | 6 11 12 24 | dprdfcl |  | 
						
							| 142 | 101 102 5 33 103 105 106 107 27 140 141 98 | pj1eq |  | 
						
							| 143 | 138 142 | mpbid |  | 
						
							| 144 | 143 | simpld |  | 
						
							| 145 | 29 144 | eqtrd |  | 
						
							| 146 | 145 | mpteq2dva |  | 
						
							| 147 | 118 146 | eqtr4d |  | 
						
							| 148 | 147 | oveq2d |  | 
						
							| 149 | 117 148 | eqtrd |  | 
						
							| 150 | 116 149 | jca |  | 
						
							| 151 | 10 150 | rexlimddv |  |