Metamath Proof Explorer


Theorem dvalveclem

Description: Lemma for dvalvec . (Contributed by NM, 11-Oct-2013) (Proof shortened by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvalvec.h H = LHyp K
dvalvec.v U = DVecA K W
dvalveclem.t T = LTrn K W
dvalveclem.a + ˙ = + U
dvalveclem.e E = TEndo K W
dvalveclem.d D = Scalar U
dvalveclem.b B = Base K
dvalveclem.p ˙ = + D
dvalveclem.m × ˙ = D
dvalveclem.s · ˙ = U
Assertion dvalveclem K HL W H U LVec

Proof

Step Hyp Ref Expression
1 dvalvec.h H = LHyp K
2 dvalvec.v U = DVecA K W
3 dvalveclem.t T = LTrn K W
4 dvalveclem.a + ˙ = + U
5 dvalveclem.e E = TEndo K W
6 dvalveclem.d D = Scalar U
7 dvalveclem.b B = Base K
8 dvalveclem.p ˙ = + D
9 dvalveclem.m × ˙ = D
10 dvalveclem.s · ˙ = U
11 eqid Base U = Base U
12 1 3 2 11 dvavbase K HL W H Base U = T
13 12 eqcomd K HL W H T = Base U
14 4 a1i K HL W H + ˙ = + U
15 6 a1i K HL W H D = Scalar U
16 10 a1i K HL W H · ˙ = U
17 eqid Base D = Base D
18 1 5 2 6 17 dvabase K HL W H Base D = E
19 18 eqcomd K HL W H E = Base D
20 8 a1i K HL W H ˙ = + D
21 9 a1i K HL W H × ˙ = D
22 1 3 5 tendoidcl K HL W H I T E
23 22 19 eleqtrd K HL W H I T Base D
24 eqid f T I B = f T I B
25 7 1 3 5 24 tendo1ne0 K HL W H I T f T I B
26 eqid EDRing K W = EDRing K W
27 1 26 2 6 dvasca K HL W H D = EDRing K W
28 27 fveq2d K HL W H 0 D = 0 EDRing K W
29 eqid 0 EDRing K W = 0 EDRing K W
30 7 1 3 26 24 29 erng0g K HL W H 0 EDRing K W = f T I B
31 28 30 eqtrd K HL W H 0 D = f T I B
32 25 31 neeqtrrd K HL W H I T 0 D
33 22 22 jca K HL W H I T E I T E
34 1 3 5 2 6 9 dvamulr K HL W H I T E I T E I T × ˙ I T = I T I T
35 33 34 mpdan K HL W H I T × ˙ I T = I T I T
36 f1oi I T : T 1-1 onto T
37 f1of I T : T 1-1 onto T I T : T T
38 fcoi2 I T : T T I T I T = I T
39 36 37 38 mp2b I T I T = I T
40 35 39 eqtrdi K HL W H I T × ˙ I T = I T
41 23 32 40 3jca K HL W H I T Base D I T 0 D I T × ˙ I T = I T
42 1 26 erngdv K HL W H EDRing K W DivRing
43 27 42 eqeltrd K HL W H D DivRing
44 eqid 0 D = 0 D
45 eqid 1 D = 1 D
46 17 9 44 45 drngid2 D DivRing I T Base D I T 0 D I T × ˙ I T = I T 1 D = I T
47 43 46 syl K HL W H I T Base D I T 0 D I T × ˙ I T = I T 1 D = I T
48 41 47 mpbid K HL W H 1 D = I T
49 48 eqcomd K HL W H I T = 1 D
50 drngring D DivRing D Ring
51 43 50 syl K HL W H D Ring
52 1 2 dvaabl K HL W H U Abel
53 ablgrp U Abel U Grp
54 52 53 syl K HL W H U Grp
55 1 3 5 2 10 dvavsca K HL W H s E t T s · ˙ t = s t
56 55 3impb K HL W H s E t T s · ˙ t = s t
57 1 3 5 tendocl K HL W H s E t T s t T
58 56 57 eqeltrd K HL W H s E t T s · ˙ t T
59 1 3 5 tendospdi1 K HL W H s E t T f T s t f = s t s f
60 simpr1 K HL W H s E t T f T s E
61 1 3 ltrnco K HL W H t T f T t f T
62 61 3adant3r1 K HL W H s E t T f T t f T
63 60 62 jca K HL W H s E t T f T s E t f T
64 1 3 5 2 10 dvavsca K HL W H s E t f T s · ˙ t f = s t f
65 63 64 syldan K HL W H s E t T f T s · ˙ t f = s t f
66 57 3adant3r3 K HL W H s E t T f T s t T
67 1 3 5 tendocl K HL W H s E f T s f T
68 67 3adant3r2 K HL W H s E t T f T s f T
69 66 68 jca K HL W H s E t T f T s t T s f T
70 1 3 2 4 dvavadd K HL W H s t T s f T s t + ˙ s f = s t s f
71 69 70 syldan K HL W H s E t T f T s t + ˙ s f = s t s f
72 59 65 71 3eqtr4d K HL W H s E t T f T s · ˙ t f = s t + ˙ s f
73 1 3 2 4 dvavadd K HL W H t T f T t + ˙ f = t f
74 73 3adantr1 K HL W H s E t T f T t + ˙ f = t f
75 74 oveq2d K HL W H s E t T f T s · ˙ t + ˙ f = s · ˙ t f
76 55 3adantr3 K HL W H s E t T f T s · ˙ t = s t
77 1 3 5 2 10 dvavsca K HL W H s E f T s · ˙ f = s f
78 77 3adantr2 K HL W H s E t T f T s · ˙ f = s f
79 76 78 oveq12d K HL W H s E t T f T s · ˙ t + ˙ s · ˙ f = s t + ˙ s f
80 72 75 79 3eqtr4d K HL W H s E t T f T s · ˙ t + ˙ f = s · ˙ t + ˙ s · ˙ f
81 1 3 5 2 6 8 dvaplusgv K HL W H s E t E f T s ˙ t f = s f t f
82 1 3 5 2 6 8 dvafplusg K HL W H ˙ = a E , b E f T a f b f
83 82 3ad2ant1 K HL W H s E t E ˙ = a E , b E f T a f b f
84 83 oveqd K HL W H s E t E s ˙ t = s a E , b E f T a f b f t
85 eqid a E , b E f T a f b f = a E , b E f T a f b f
86 1 3 5 85 tendoplcl K HL W H s E t E s a E , b E f T a f b f t E
87 84 86 eqeltrd K HL W H s E t E s ˙ t E
88 87 3adant3r3 K HL W H s E t E f T s ˙ t E
89 simpr3 K HL W H s E t E f T f T
90 88 89 jca K HL W H s E t E f T s ˙ t E f T
91 1 3 5 2 10 dvavsca K HL W H s ˙ t E f T s ˙ t · ˙ f = s ˙ t f
92 90 91 syldan K HL W H s E t E f T s ˙ t · ˙ f = s ˙ t f
93 77 3adantr2 K HL W H s E t E f T s · ˙ f = s f
94 1 3 5 2 10 dvavsca K HL W H t E f T t · ˙ f = t f
95 94 3adantr1 K HL W H s E t E f T t · ˙ f = t f
96 93 95 oveq12d K HL W H s E t E f T s · ˙ f + ˙ t · ˙ f = s f + ˙ t f
97 67 3adant3r2 K HL W H s E t E f T s f T
98 1 3 5 tendospcl K HL W H t E f T t f T
99 98 3adant3r1 K HL W H s E t E f T t f T
100 97 99 jca K HL W H s E t E f T s f T t f T
101 1 3 2 4 dvavadd K HL W H s f T t f T s f + ˙ t f = s f t f
102 100 101 syldan K HL W H s E t E f T s f + ˙ t f = s f t f
103 96 102 eqtrd K HL W H s E t E f T s · ˙ f + ˙ t · ˙ f = s f t f
104 81 92 103 3eqtr4d K HL W H s E t E f T s ˙ t · ˙ f = s · ˙ f + ˙ t · ˙ f
105 1 3 5 tendospass K HL W H s E t E f T s t f = s t f
106 1 5 tendococl K HL W H s E t E s t E
107 106 3adant3r3 K HL W H s E t E f T s t E
108 107 89 jca K HL W H s E t E f T s t E f T
109 1 3 5 2 10 dvavsca K HL W H s t E f T s t · ˙ f = s t f
110 108 109 syldan K HL W H s E t E f T s t · ˙ f = s t f
111 simpr1 K HL W H s E t E f T s E
112 111 99 jca K HL W H s E t E f T s E t f T
113 1 3 5 2 10 dvavsca K HL W H s E t f T s · ˙ t f = s t f
114 112 113 syldan K HL W H s E t E f T s · ˙ t f = s t f
115 105 110 114 3eqtr4d K HL W H s E t E f T s t · ˙ f = s · ˙ t f
116 1 3 5 2 6 9 dvamulr K HL W H s E t E s × ˙ t = s t
117 116 3adantr3 K HL W H s E t E f T s × ˙ t = s t
118 117 oveq1d K HL W H s E t E f T s × ˙ t · ˙ f = s t · ˙ f
119 95 oveq2d K HL W H s E t E f T s · ˙ t · ˙ f = s · ˙ t f
120 115 118 119 3eqtr4d K HL W H s E t E f T s × ˙ t · ˙ f = s · ˙ t · ˙ f
121 22 anim1i K HL W H s T I T E s T
122 1 3 5 2 10 dvavsca K HL W H I T E s T I T · ˙ s = I T s
123 121 122 syldan K HL W H s T I T · ˙ s = I T s
124 fvresi s T I T s = s
125 124 adantl K HL W H s T I T s = s
126 123 125 eqtrd K HL W H s T I T · ˙ s = s
127 13 14 15 16 19 20 21 49 51 54 58 80 104 120 126 islmodd K HL W H U LMod
128 6 islvec U LVec U LMod D DivRing
129 127 43 128 sylanbrc K HL W H U LVec