Metamath Proof Explorer


Theorem dvalveclem

Description: Lemma for dvalvec . (Contributed by NM, 11-Oct-2013) (Proof shortened by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses dvalvec.h H=LHypK
dvalvec.v U=DVecAKW
dvalveclem.t T=LTrnKW
dvalveclem.a +˙=+U
dvalveclem.e E=TEndoKW
dvalveclem.d D=ScalarU
dvalveclem.b B=BaseK
dvalveclem.p ˙=+D
dvalveclem.m ×˙=D
dvalveclem.s ·˙=U
Assertion dvalveclem KHLWHULVec

Proof

Step Hyp Ref Expression
1 dvalvec.h H=LHypK
2 dvalvec.v U=DVecAKW
3 dvalveclem.t T=LTrnKW
4 dvalveclem.a +˙=+U
5 dvalveclem.e E=TEndoKW
6 dvalveclem.d D=ScalarU
7 dvalveclem.b B=BaseK
8 dvalveclem.p ˙=+D
9 dvalveclem.m ×˙=D
10 dvalveclem.s ·˙=U
11 eqid BaseU=BaseU
12 1 3 2 11 dvavbase KHLWHBaseU=T
13 12 eqcomd KHLWHT=BaseU
14 4 a1i KHLWH+˙=+U
15 6 a1i KHLWHD=ScalarU
16 10 a1i KHLWH·˙=U
17 eqid BaseD=BaseD
18 1 5 2 6 17 dvabase KHLWHBaseD=E
19 18 eqcomd KHLWHE=BaseD
20 8 a1i KHLWH˙=+D
21 9 a1i KHLWH×˙=D
22 1 3 5 tendoidcl KHLWHITE
23 22 19 eleqtrd KHLWHITBaseD
24 eqid fTIB=fTIB
25 7 1 3 5 24 tendo1ne0 KHLWHITfTIB
26 eqid EDRingKW=EDRingKW
27 1 26 2 6 dvasca KHLWHD=EDRingKW
28 27 fveq2d KHLWH0D=0EDRingKW
29 eqid 0EDRingKW=0EDRingKW
30 7 1 3 26 24 29 erng0g KHLWH0EDRingKW=fTIB
31 28 30 eqtrd KHLWH0D=fTIB
32 25 31 neeqtrrd KHLWHIT0D
33 22 22 jca KHLWHITEITE
34 1 3 5 2 6 9 dvamulr KHLWHITEITEIT×˙IT=ITIT
35 33 34 mpdan KHLWHIT×˙IT=ITIT
36 f1oi IT:T1-1 ontoT
37 f1of IT:T1-1 ontoTIT:TT
38 fcoi2 IT:TTITIT=IT
39 36 37 38 mp2b ITIT=IT
40 35 39 eqtrdi KHLWHIT×˙IT=IT
41 23 32 40 3jca KHLWHITBaseDIT0DIT×˙IT=IT
42 1 26 erngdv KHLWHEDRingKWDivRing
43 27 42 eqeltrd KHLWHDDivRing
44 eqid 0D=0D
45 eqid 1D=1D
46 17 9 44 45 drngid2 DDivRingITBaseDIT0DIT×˙IT=IT1D=IT
47 43 46 syl KHLWHITBaseDIT0DIT×˙IT=IT1D=IT
48 41 47 mpbid KHLWH1D=IT
49 48 eqcomd KHLWHIT=1D
50 drngring DDivRingDRing
51 43 50 syl KHLWHDRing
52 1 2 dvaabl KHLWHUAbel
53 ablgrp UAbelUGrp
54 52 53 syl KHLWHUGrp
55 1 3 5 2 10 dvavsca KHLWHsEtTs·˙t=st
56 55 3impb KHLWHsEtTs·˙t=st
57 1 3 5 tendocl KHLWHsEtTstT
58 56 57 eqeltrd KHLWHsEtTs·˙tT
59 1 3 5 tendospdi1 KHLWHsEtTfTstf=stsf
60 simpr1 KHLWHsEtTfTsE
61 1 3 ltrnco KHLWHtTfTtfT
62 61 3adant3r1 KHLWHsEtTfTtfT
63 60 62 jca KHLWHsEtTfTsEtfT
64 1 3 5 2 10 dvavsca KHLWHsEtfTs·˙tf=stf
65 63 64 syldan KHLWHsEtTfTs·˙tf=stf
66 57 3adant3r3 KHLWHsEtTfTstT
67 1 3 5 tendocl KHLWHsEfTsfT
68 67 3adant3r2 KHLWHsEtTfTsfT
69 66 68 jca KHLWHsEtTfTstTsfT
70 1 3 2 4 dvavadd KHLWHstTsfTst+˙sf=stsf
71 69 70 syldan KHLWHsEtTfTst+˙sf=stsf
72 59 65 71 3eqtr4d KHLWHsEtTfTs·˙tf=st+˙sf
73 1 3 2 4 dvavadd KHLWHtTfTt+˙f=tf
74 73 3adantr1 KHLWHsEtTfTt+˙f=tf
75 74 oveq2d KHLWHsEtTfTs·˙t+˙f=s·˙tf
76 55 3adantr3 KHLWHsEtTfTs·˙t=st
77 1 3 5 2 10 dvavsca KHLWHsEfTs·˙f=sf
78 77 3adantr2 KHLWHsEtTfTs·˙f=sf
79 76 78 oveq12d KHLWHsEtTfTs·˙t+˙s·˙f=st+˙sf
80 72 75 79 3eqtr4d KHLWHsEtTfTs·˙t+˙f=s·˙t+˙s·˙f
81 1 3 5 2 6 8 dvaplusgv KHLWHsEtEfTs˙tf=sftf
82 1 3 5 2 6 8 dvafplusg KHLWH˙=aE,bEfTafbf
83 82 3ad2ant1 KHLWHsEtE˙=aE,bEfTafbf
84 83 oveqd KHLWHsEtEs˙t=saE,bEfTafbft
85 eqid aE,bEfTafbf=aE,bEfTafbf
86 1 3 5 85 tendoplcl KHLWHsEtEsaE,bEfTafbftE
87 84 86 eqeltrd KHLWHsEtEs˙tE
88 87 3adant3r3 KHLWHsEtEfTs˙tE
89 simpr3 KHLWHsEtEfTfT
90 88 89 jca KHLWHsEtEfTs˙tEfT
91 1 3 5 2 10 dvavsca KHLWHs˙tEfTs˙t·˙f=s˙tf
92 90 91 syldan KHLWHsEtEfTs˙t·˙f=s˙tf
93 77 3adantr2 KHLWHsEtEfTs·˙f=sf
94 1 3 5 2 10 dvavsca KHLWHtEfTt·˙f=tf
95 94 3adantr1 KHLWHsEtEfTt·˙f=tf
96 93 95 oveq12d KHLWHsEtEfTs·˙f+˙t·˙f=sf+˙tf
97 67 3adant3r2 KHLWHsEtEfTsfT
98 1 3 5 tendospcl KHLWHtEfTtfT
99 98 3adant3r1 KHLWHsEtEfTtfT
100 97 99 jca KHLWHsEtEfTsfTtfT
101 1 3 2 4 dvavadd KHLWHsfTtfTsf+˙tf=sftf
102 100 101 syldan KHLWHsEtEfTsf+˙tf=sftf
103 96 102 eqtrd KHLWHsEtEfTs·˙f+˙t·˙f=sftf
104 81 92 103 3eqtr4d KHLWHsEtEfTs˙t·˙f=s·˙f+˙t·˙f
105 1 3 5 tendospass KHLWHsEtEfTstf=stf
106 1 5 tendococl KHLWHsEtEstE
107 106 3adant3r3 KHLWHsEtEfTstE
108 107 89 jca KHLWHsEtEfTstEfT
109 1 3 5 2 10 dvavsca KHLWHstEfTst·˙f=stf
110 108 109 syldan KHLWHsEtEfTst·˙f=stf
111 simpr1 KHLWHsEtEfTsE
112 111 99 jca KHLWHsEtEfTsEtfT
113 1 3 5 2 10 dvavsca KHLWHsEtfTs·˙tf=stf
114 112 113 syldan KHLWHsEtEfTs·˙tf=stf
115 105 110 114 3eqtr4d KHLWHsEtEfTst·˙f=s·˙tf
116 1 3 5 2 6 9 dvamulr KHLWHsEtEs×˙t=st
117 116 3adantr3 KHLWHsEtEfTs×˙t=st
118 117 oveq1d KHLWHsEtEfTs×˙t·˙f=st·˙f
119 95 oveq2d KHLWHsEtEfTs·˙t·˙f=s·˙tf
120 115 118 119 3eqtr4d KHLWHsEtEfTs×˙t·˙f=s·˙t·˙f
121 22 anim1i KHLWHsTITEsT
122 1 3 5 2 10 dvavsca KHLWHITEsTIT·˙s=ITs
123 121 122 syldan KHLWHsTIT·˙s=ITs
124 fvresi sTITs=s
125 124 adantl KHLWHsTITs=s
126 123 125 eqtrd KHLWHsTIT·˙s=s
127 13 14 15 16 19 20 21 49 51 54 58 80 104 120 126 islmodd KHLWHULMod
128 6 islvec ULVecULModDDivRing
129 127 43 128 sylanbrc KHLWHULVec