Metamath Proof Explorer


Theorem dvply1

Description: Derivative of a polynomial, explicit sum version. (Contributed by Stefan O'Rear, 13-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypotheses dvply1.f φF=zk=0NAkzk
dvply1.g φG=zk=0N1Bkzk
dvply1.a φA:0
dvply1.b B=k0k+1Ak+1
dvply1.n φN0
Assertion dvply1 φDF=G

Proof

Step Hyp Ref Expression
1 dvply1.f φF=zk=0NAkzk
2 dvply1.g φG=zk=0N1Bkzk
3 dvply1.a φA:0
4 dvply1.b B=k0k+1Ak+1
5 dvply1.n φN0
6 1 oveq2d φDF=dzk=0NAkzkdz
7 eqid TopOpenfld=TopOpenfld
8 7 cnfldtopon TopOpenfldTopOn
9 8 toponrestid TopOpenfld=TopOpenfld𝑡
10 cnelprrecn
11 10 a1i φ
12 7 cnfldtop TopOpenfldTop
13 unicntop =TopOpenfld
14 13 topopn TopOpenfldTopTopOpenfld
15 12 14 mp1i φTopOpenfld
16 fzfid φ0NFin
17 elfznn0 k0Nk0
18 ffvelcdm A:0k0Ak
19 3 17 18 syl2an φk0NAk
20 19 adantr φk0NzAk
21 simpr φk0Nzz
22 17 ad2antlr φk0Nzk0
23 21 22 expcld φk0Nzzk
24 20 23 mulcld φk0NzAkzk
25 24 3impa φk0NzAkzk
26 19 3adant3 φk0NzAk
27 0cnd φk0Nzk=00
28 simpl2 φk0Nz¬k=0k0N
29 28 17 syl φk0Nz¬k=0k0
30 29 nn0cnd φk0Nz¬k=0k
31 simpl3 φk0Nz¬k=0z
32 simpr φk0Nz¬k=0¬k=0
33 elnn0 k0kk=0
34 29 33 sylib φk0Nz¬k=0kk=0
35 orel2 ¬k=0kk=0k
36 32 34 35 sylc φk0Nz¬k=0k
37 nnm1nn0 kk10
38 36 37 syl φk0Nz¬k=0k10
39 31 38 expcld φk0Nz¬k=0zk1
40 30 39 mulcld φk0Nz¬k=0kzk1
41 27 40 ifclda φk0Nzifk=00kzk1
42 26 41 mulcld φk0NzAkifk=00kzk1
43 10 a1i φk0N
44 c0ex 0V
45 ovex kzk1V
46 44 45 ifex ifk=00kzk1V
47 46 a1i φk0Nzifk=00kzk1V
48 17 adantl φk0Nk0
49 dvexp2 k0dzzkdz=zifk=00kzk1
50 48 49 syl φk0Ndzzkdz=zifk=00kzk1
51 43 23 47 50 19 dvmptcmul φk0NdzAkzkdz=zAkifk=00kzk1
52 9 7 11 15 16 25 42 51 dvmptfsum φdzk=0NAkzkdz=zk=0NAkifk=00kzk1
53 elfznn k1Nk
54 53 nnne0d k1Nk0
55 54 neneqd k1N¬k=0
56 55 adantl φzk1N¬k=0
57 56 iffalsed φzk1Nifk=00kzk1=kzk1
58 57 oveq2d φzk1NAkifk=00kzk1=Akkzk1
59 58 sumeq2dv φzk=1NAkifk=00kzk1=k=1NAkkzk1
60 1eluzge0 10
61 fzss1 101N0N
62 60 61 mp1i φz1N0N
63 3 adantr φzA:0
64 53 nnnn0d k1Nk0
65 63 64 18 syl2an φzk1NAk
66 54 adantl φzk1Nk0
67 66 neneqd φzk1N¬k=0
68 67 iffalsed φzk1Nifk=00kzk1=kzk1
69 64 adantl φzk1Nk0
70 69 nn0cnd φzk1Nk
71 simplr φzk1Nz
72 53 37 syl k1Nk10
73 72 adantl φzk1Nk10
74 71 73 expcld φzk1Nzk1
75 70 74 mulcld φzk1Nkzk1
76 68 75 eqeltrd φzk1Nifk=00kzk1
77 65 76 mulcld φzk1NAkifk=00kzk1
78 eldifn k0N1N¬k1N
79 0p1e1 0+1=1
80 79 oveq1i 0+1N=1N
81 80 eleq2i k0+1Nk1N
82 78 81 sylnibr k0N1N¬k0+1N
83 82 adantl φzk0N1N¬k0+1N
84 eldifi k0N1Nk0N
85 84 adantl φzk0N1Nk0N
86 nn0uz 0=0
87 5 86 eleqtrdi φN0
88 87 ad2antrr φzk0N1NN0
89 elfzp12 N0k0Nk=0k0+1N
90 88 89 syl φzk0N1Nk0Nk=0k0+1N
91 85 90 mpbid φzk0N1Nk=0k0+1N
92 orel2 ¬k0+1Nk=0k0+1Nk=0
93 83 91 92 sylc φzk0N1Nk=0
94 93 iftrued φzk0N1Nifk=00kzk1=0
95 94 oveq2d φzk0N1NAkifk=00kzk1=Ak0
96 63 17 18 syl2an φzk0NAk
97 96 mul01d φzk0NAk0=0
98 84 97 sylan2 φzk0N1NAk0=0
99 95 98 eqtrd φzk0N1NAkifk=00kzk1=0
100 fzfid φz0NFin
101 62 77 99 100 fsumss φzk=1NAkifk=00kzk1=k=0NAkifk=00kzk1
102 elfznn0 j0N1j0
103 102 adantl φzj0N1j0
104 103 nn0cnd φzj0N1j
105 ax-1cn 1
106 pncan j1j+1-1=j
107 104 105 106 sylancl φzj0N1j+1-1=j
108 107 oveq2d φzj0N1zj+1-1=zj
109 108 oveq2d φzj0N1j+1zj+1-1=j+1zj
110 109 oveq2d φzj0N1Aj+1j+1zj+1-1=Aj+1j+1zj
111 3 ad2antrr φzj0N1A:0
112 peano2nn0 j0j+10
113 102 112 syl j0N1j+10
114 113 adantl φzj0N1j+10
115 111 114 ffvelcdmd φzj0N1Aj+1
116 114 nn0cnd φzj0N1j+1
117 simplr φzj0N1z
118 117 103 expcld φzj0N1zj
119 115 116 118 mulassd φzj0N1Aj+1j+1zj=Aj+1j+1zj
120 115 116 mulcomd φzj0N1Aj+1j+1=j+1Aj+1
121 120 oveq1d φzj0N1Aj+1j+1zj=j+1Aj+1zj
122 110 119 121 3eqtr2d φzj0N1Aj+1j+1zj+1-1=j+1Aj+1zj
123 122 sumeq2dv φzj=0N1Aj+1j+1zj+1-1=j=0N1j+1Aj+1zj
124 1m1e0 11=0
125 124 oveq1i 11N1=0N1
126 125 sumeq1i j=11N1Aj+1j+1zj+1-1=j=0N1Aj+1j+1zj+1-1
127 oveq1 k=jk+1=j+1
128 fvoveq1 k=jAk+1=Aj+1
129 127 128 oveq12d k=jk+1Ak+1=j+1Aj+1
130 oveq2 k=jzk=zj
131 129 130 oveq12d k=jk+1Ak+1zk=j+1Aj+1zj
132 131 cbvsumv k=0N1k+1Ak+1zk=j=0N1j+1Aj+1zj
133 123 126 132 3eqtr4g φzj=11N1Aj+1j+1zj+1-1=k=0N1k+1Ak+1zk
134 1zzd φz1
135 5 adantr φzN0
136 135 nn0zd φzN
137 65 75 mulcld φzk1NAkkzk1
138 fveq2 k=j+1Ak=Aj+1
139 id k=j+1k=j+1
140 oveq1 k=j+1k1=j+1-1
141 140 oveq2d k=j+1zk1=zj+1-1
142 139 141 oveq12d k=j+1kzk1=j+1zj+1-1
143 138 142 oveq12d k=j+1Akkzk1=Aj+1j+1zj+1-1
144 134 134 136 137 143 fsumshftm φzk=1NAkkzk1=j=11N1Aj+1j+1zj+1-1
145 elfznn0 k0N1k0
146 145 adantl φzk0N1k0
147 ovex k+1Ak+1V
148 4 fvmpt2 k0k+1Ak+1VBk=k+1Ak+1
149 146 147 148 sylancl φzk0N1Bk=k+1Ak+1
150 149 oveq1d φzk0N1Bkzk=k+1Ak+1zk
151 150 sumeq2dv φzk=0N1Bkzk=k=0N1k+1Ak+1zk
152 133 144 151 3eqtr4d φzk=1NAkkzk1=k=0N1Bkzk
153 59 101 152 3eqtr3d φzk=0NAkifk=00kzk1=k=0N1Bkzk
154 153 mpteq2dva φzk=0NAkifk=00kzk1=zk=0N1Bkzk
155 154 2 eqtr4d φzk=0NAkifk=00kzk1=G
156 6 52 155 3eqtrd φDF=G