Metamath Proof Explorer


Theorem ellimc2

Description: Write the definition of a limit directly in terms of open sets of the topology on the complex numbers. (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limccl.f φF:A
limccl.a φA
limccl.b φB
ellimc2.k K=TopOpenfld
Assertion ellimc2 φCFlimBCuKCuwKBwFwABu

Proof

Step Hyp Ref Expression
1 limccl.f φF:A
2 limccl.a φA
3 limccl.b φB
4 ellimc2.k K=TopOpenfld
5 limccl FlimB
6 5 sseli CFlimBC
7 6 pm4.71ri CFlimBCCFlimB
8 eqid K𝑡AB=K𝑡AB
9 eqid zABifz=BCFz=zABifz=BCFz
10 8 4 9 1 2 3 ellimc φCFlimBzABifz=BCFzK𝑡ABCnPKB
11 10 adantr φCCFlimBzABifz=BCFzK𝑡ABCnPKB
12 4 cnfldtopon KTopOn
13 3 snssd φB
14 2 13 unssd φAB
15 resttopon KTopOnABK𝑡ABTopOnAB
16 12 14 15 sylancr φK𝑡ABTopOnAB
17 16 adantr φCK𝑡ABTopOnAB
18 12 a1i φCKTopOn
19 ssun2 BAB
20 snssg BBABBAB
21 3 20 syl φBABBAB
22 19 21 mpbiri φBAB
23 22 adantr φCBAB
24 elun zABzAzB
25 velsn zBz=B
26 25 orbi2i zAzBzAz=B
27 24 26 bitri zABzAz=B
28 simpllr φCzAz=Bz=BC
29 pm5.61 zAz=B¬z=BzA¬z=B
30 1 ffvelcdmda φzAFz
31 30 ad2ant2r φCzA¬z=BFz
32 29 31 sylan2b φCzAz=B¬z=BFz
33 32 anassrs φCzAz=B¬z=BFz
34 28 33 ifclda φCzAz=Bifz=BCFz
35 27 34 sylan2b φCzABifz=BCFz
36 35 fmpttd φCzABifz=BCFz:AB
37 iscnp K𝑡ABTopOnABKTopOnBABzABifz=BCFzK𝑡ABCnPKBzABifz=BCFz:ABuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvu
38 37 baibd K𝑡ABTopOnABKTopOnBABzABifz=BCFz:ABzABifz=BCFzK𝑡ABCnPKBuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvu
39 17 18 23 36 38 syl31anc φCzABifz=BCFzK𝑡ABCnPKBuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvu
40 iftrue z=Bifz=BCFz=C
41 40 9 fvmptg BABCzABifz=BCFzB=C
42 22 41 sylan φCzABifz=BCFzB=C
43 42 eleq1d φCzABifz=BCFzBuCu
44 43 imbi1d φCzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvuCuvK𝑡ABBvzABifz=BCFzvu
45 44 adantr φCuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvuCuvK𝑡ABBvzABifz=BCFzvu
46 4 cnfldtop KTop
47 cnex V
48 47 ssex ABABV
49 14 48 syl φABV
50 49 ad2antrr φCuKCuABV
51 restval KTopABVK𝑡AB=ranwKwAB
52 46 50 51 sylancr φCuKCuK𝑡AB=ranwKwAB
53 52 rexeqdv φCuKCuvK𝑡ABBvzABifz=BCFzvuvranwKwABBvzABifz=BCFzvu
54 vex wV
55 54 inex1 wABV
56 55 rgenw wKwABV
57 eqid wKwAB=wKwAB
58 eleq2 v=wABBvBwAB
59 imaeq2 v=wABzABifz=BCFzv=zABifz=BCFzwAB
60 59 sseq1d v=wABzABifz=BCFzvuzABifz=BCFzwABu
61 58 60 anbi12d v=wABBvzABifz=BCFzvuBwABzABifz=BCFzwABu
62 57 61 rexrnmptw wKwABVvranwKwABBvzABifz=BCFzvuwKBwABzABifz=BCFzwABu
63 56 62 mp1i φCuKCuvranwKwABBvzABifz=BCFzvuwKBwABzABifz=BCFzwABu
64 22 ad3antrrr φCuKCuwKBAB
65 elin BwABBwBAB
66 65 rbaib BABBwABBw
67 64 66 syl φCuKCuwKBwABBw
68 simpllr φCuKCuwKC
69 fvex FzV
70 ifexg CFzVifz=BCFzV
71 68 69 70 sylancl φCuKCuwKifz=BCFzV
72 71 ralrimivw φCuKCuwKzwABifz=BCFzV
73 eqid zwABifz=BCFz=zwABifz=BCFz
74 73 fnmpt zwABifz=BCFzVzwABifz=BCFzFnwAB
75 73 fmpt zwABifz=BCFzuzwABifz=BCFz:wABu
76 df-f zwABifz=BCFz:wABuzwABifz=BCFzFnwABranzwABifz=BCFzu
77 75 76 bitri zwABifz=BCFzuzwABifz=BCFzFnwABranzwABifz=BCFzu
78 77 baib zwABifz=BCFzFnwABzwABifz=BCFzuranzwABifz=BCFzu
79 72 74 78 3syl φCuKCuwKzwABifz=BCFzuranzwABifz=BCFzu
80 simplrr φCuKCuwKCu
81 elinel2 zwBzB
82 25 40 sylbi zBifz=BCFz=C
83 82 eleq1d zBifz=BCFzuCu
84 81 83 syl zwBifz=BCFzuCu
85 80 84 syl5ibrcom φCuKCuwKzwBifz=BCFzu
86 85 ralrimiv φCuKCuwKzwBifz=BCFzu
87 undif1 ABB=AB
88 87 ineq2i wABB=wAB
89 indi wABB=wABwB
90 88 89 eqtr3i wAB=wABwB
91 90 raleqi zwABifz=BCFzuzwABwBifz=BCFzu
92 ralunb zwABwBifz=BCFzuzwABifz=BCFzuzwBifz=BCFzu
93 91 92 bitri zwABifz=BCFzuzwABifz=BCFzuzwBifz=BCFzu
94 93 rbaib zwBifz=BCFzuzwABifz=BCFzuzwABifz=BCFzu
95 86 94 syl φCuKCuwKzwABifz=BCFzuzwABifz=BCFzu
96 79 95 bitr3d φCuKCuwKranzwABifz=BCFzuzwABifz=BCFzu
97 elinel2 zwABzAB
98 eldifsni zABzB
99 ifnefalse zBifz=BCFz=Fz
100 98 99 syl zABifz=BCFz=Fz
101 100 eleq1d zABifz=BCFzuFzu
102 97 101 syl zwABifz=BCFzuFzu
103 102 ralbiia zwABifz=BCFzuzwABFzu
104 96 103 bitrdi φCuKCuwKranzwABifz=BCFzuzwABFzu
105 df-ima zABifz=BCFzwAB=ranzABifz=BCFzwAB
106 inss2 wABAB
107 resmpt wABABzABifz=BCFzwAB=zwABifz=BCFz
108 106 107 mp1i φCuKCuwKzABifz=BCFzwAB=zwABifz=BCFz
109 108 rneqd φCuKCuwKranzABifz=BCFzwAB=ranzwABifz=BCFz
110 105 109 eqtrid φCuKCuwKzABifz=BCFzwAB=ranzwABifz=BCFz
111 110 sseq1d φCuKCuwKzABifz=BCFzwABuranzwABifz=BCFzu
112 1 ad3antrrr φCuKCuwKF:A
113 112 ffund φCuKCuwKFunF
114 inss2 wABAB
115 difss ABA
116 114 115 sstri wABA
117 112 fdmd φCuKCuwKdomF=A
118 116 117 sseqtrrid φCuKCuwKwABdomF
119 funimass4 FunFwABdomFFwABuzwABFzu
120 113 118 119 syl2anc φCuKCuwKFwABuzwABFzu
121 104 111 120 3bitr4d φCuKCuwKzABifz=BCFzwABuFwABu
122 67 121 anbi12d φCuKCuwKBwABzABifz=BCFzwABuBwFwABu
123 122 rexbidva φCuKCuwKBwABzABifz=BCFzwABuwKBwFwABu
124 53 63 123 3bitrd φCuKCuvK𝑡ABBvzABifz=BCFzvuwKBwFwABu
125 124 anassrs φCuKCuvK𝑡ABBvzABifz=BCFzvuwKBwFwABu
126 125 pm5.74da φCuKCuvK𝑡ABBvzABifz=BCFzvuCuwKBwFwABu
127 45 126 bitrd φCuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvuCuwKBwFwABu
128 127 ralbidva φCuKzABifz=BCFzBuvK𝑡ABBvzABifz=BCFzvuuKCuwKBwFwABu
129 11 39 128 3bitrd φCCFlimBuKCuwKBwFwABu
130 129 pm5.32da φCCFlimBCuKCuwKBwFwABu
131 7 130 bitrid φCFlimBCuKCuwKBwFwABu