Metamath Proof Explorer


Theorem emcllem7

Description: Lemma for emcl and harmonicbnd . Derive bounds on gamma as F ( 1 ) and G ( 1 ) . (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 9-Apr-2016)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
emcl.3 H=nlog1+1n
emcl.4 T=n1nlog1+1n
Assertion emcllem7 γ1log21F:γ1G:1log2γ

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 emcl.3 H=nlog1+1n
4 emcl.4 T=n1nlog1+1n
5 nnuz =1
6 1zzd 1
7 1 2 3 4 emcllem6 FγGγ
8 7 simpri Gγ
9 8 a1i Gγ
10 1 2 emcllem1 F:G:
11 10 simpri G:
12 11 ffvelcdmi kGk
13 12 adantl kGk
14 5 6 9 13 climrecl γ
15 1nn 1
16 simpr ii
17 8 a1i iGγ
18 12 adantl ikGk
19 1 2 emcllem2 kFk+1FkGkGk+1
20 19 simprd kGkGk+1
21 20 adantl ikGkGk+1
22 5 16 17 18 21 climub iGiγ
23 22 ralrimiva iGiγ
24 fveq2 i=1Gi=G1
25 oveq2 n=11n=11
26 25 sumeq1d n=1m=1n1m=m=111m
27 1z 1
28 ax-1cn 1
29 oveq2 m=11m=11
30 1div1e1 11=1
31 29 30 eqtrdi m=11m=1
32 31 fsum1 11m=111m=1
33 27 28 32 mp2an m=111m=1
34 26 33 eqtrdi n=1m=1n1m=1
35 oveq1 n=1n+1=1+1
36 df-2 2=1+1
37 35 36 eqtr4di n=1n+1=2
38 37 fveq2d n=1logn+1=log2
39 34 38 oveq12d n=1m=1n1mlogn+1=1log2
40 1re 1
41 2rp 2+
42 relogcl 2+log2
43 41 42 ax-mp log2
44 40 43 resubcli 1log2
45 44 elexi 1log2V
46 39 2 45 fvmpt 1G1=1log2
47 15 46 ax-mp G1=1log2
48 24 47 eqtrdi i=1Gi=1log2
49 48 breq1d i=1Giγ1log2γ
50 49 rspcva 1iGiγ1log2γ
51 15 23 50 sylancr 1log2γ
52 fveq2 x=iFx=Fi
53 52 negeqd x=iFx=Fi
54 eqid xFx=xFx
55 negex FiV
56 53 54 55 fvmpt ixFxi=Fi
57 56 adantl ixFxi=Fi
58 7 simpli Fγ
59 58 a1i Fγ
60 0cnd 0
61 nnex V
62 61 mptex xFxV
63 62 a1i xFxV
64 10 simpli F:
65 64 ffvelcdmi kFk
66 65 adantl kFk
67 66 recnd kFk
68 fveq2 x=kFx=Fk
69 68 negeqd x=kFx=Fk
70 negex FkV
71 69 54 70 fvmpt kxFxk=Fk
72 71 adantl kxFxk=Fk
73 df-neg Fk=0Fk
74 72 73 eqtrdi kxFxk=0Fk
75 5 6 59 60 63 67 74 climsubc2 xFx0γ
76 75 adantr ixFx0γ
77 66 renegcld kFk
78 72 77 eqeltrd kxFxk
79 78 adantlr ikxFxk
80 19 simpld kFk+1Fk
81 80 adantl kFk+1Fk
82 peano2nn kk+1
83 82 adantl kk+1
84 64 ffvelcdmi k+1Fk+1
85 83 84 syl kFk+1
86 85 66 lenegd kFk+1FkFkFk+1
87 81 86 mpbid kFkFk+1
88 fveq2 x=k+1Fx=Fk+1
89 88 negeqd x=k+1Fx=Fk+1
90 negex Fk+1V
91 89 54 90 fvmpt k+1xFxk+1=Fk+1
92 83 91 syl kxFxk+1=Fk+1
93 87 72 92 3brtr4d kxFxkxFxk+1
94 93 adantlr ikxFxkxFxk+1
95 5 16 76 79 94 climub ixFxi0γ
96 57 95 eqbrtrrd iFi0γ
97 df-neg γ=0γ
98 96 97 breqtrrdi iFiγ
99 14 mptru γ
100 64 ffvelcdmi iFi
101 100 adantl iFi
102 leneg γFiγFiFiγ
103 99 101 102 sylancr iγFiFiγ
104 98 103 mpbird iγFi
105 104 ralrimiva iγFi
106 fveq2 i=1Fi=F1
107 fveq2 n=1logn=log1
108 log1 log1=0
109 107 108 eqtrdi n=1logn=0
110 34 109 oveq12d n=1m=1n1mlogn=10
111 1m0e1 10=1
112 110 111 eqtrdi n=1m=1n1mlogn=1
113 40 elexi 1V
114 112 1 113 fvmpt 1F1=1
115 15 114 ax-mp F1=1
116 106 115 eqtrdi i=1Fi=1
117 116 breq2d i=1γFiγ1
118 117 rspcva 1iγFiγ1
119 15 105 118 sylancr γ1
120 44 40 elicc2i γ1log21γ1log2γγ1
121 14 51 119 120 syl3anbrc γ1log21
122 ffn F:FFn
123 64 122 mp1i FFn
124 16 5 eleqtrdi ii1
125 elfznn k1ik
126 125 adantl ik1ik
127 126 65 syl ik1iFk
128 elfznn k1i1k
129 128 adantl ik1i1k
130 129 80 syl ik1i1Fk+1Fk
131 124 127 130 monoord2 iFiF1
132 131 115 breqtrdi iFi1
133 99 40 elicc2i Fiγ1FiγFiFi1
134 101 104 132 133 syl3anbrc iFiγ1
135 134 ralrimiva iFiγ1
136 ffnfv F:γ1FFniFiγ1
137 123 135 136 sylanbrc F:γ1
138 ffn G:GFn
139 11 138 mp1i GFn
140 11 ffvelcdmi iGi
141 140 adantl iGi
142 126 12 syl ik1iGk
143 129 20 syl ik1i1GkGk+1
144 124 142 143 monoord iG1Gi
145 47 144 eqbrtrrid i1log2Gi
146 44 99 elicc2i Gi1log2γGi1log2GiGiγ
147 141 145 22 146 syl3anbrc iGi1log2γ
148 147 ralrimiva iGi1log2γ
149 ffnfv G:1log2γGFniGi1log2γ
150 139 148 149 sylanbrc G:1log2γ
151 121 137 150 3jca γ1log21F:γ1G:1log2γ
152 151 mptru γ1log21F:γ1G:1log2γ