| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bren |  | 
						
							| 2 |  | elpwi |  | 
						
							| 3 |  | imauni |  | 
						
							| 4 |  | vex |  | 
						
							| 5 | 4 | imaex |  | 
						
							| 6 | 5 | dfiun2 |  | 
						
							| 7 | 3 6 | eqtri |  | 
						
							| 8 |  | imaeq2 |  | 
						
							| 9 | 8 | eleq1d |  | 
						
							| 10 | 9 | rexrab |  | 
						
							| 11 |  | eleq1 |  | 
						
							| 12 | 11 | biimparc |  | 
						
							| 13 | 12 | rexlimivw |  | 
						
							| 14 |  | cnvimass |  | 
						
							| 15 |  | f1odm |  | 
						
							| 16 | 15 | ad3antrrr |  | 
						
							| 17 | 14 16 | sseqtrid |  | 
						
							| 18 | 4 | cnvex |  | 
						
							| 19 | 18 | imaex |  | 
						
							| 20 | 19 | elpw |  | 
						
							| 21 | 17 20 | sylibr |  | 
						
							| 22 |  | f1ofo |  | 
						
							| 23 | 22 | ad3antrrr |  | 
						
							| 24 |  | simprl |  | 
						
							| 25 | 24 | sselda |  | 
						
							| 26 | 25 | elpwid |  | 
						
							| 27 |  | foimacnv |  | 
						
							| 28 | 23 26 27 | syl2anc |  | 
						
							| 29 | 28 | eqcomd |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 29 30 | eqeltrrd |  | 
						
							| 32 |  | imaeq2 |  | 
						
							| 33 | 32 | eleq1d |  | 
						
							| 34 | 32 | eqeq2d |  | 
						
							| 35 | 33 34 | anbi12d |  | 
						
							| 36 | 35 | rspcev |  | 
						
							| 37 | 21 31 29 36 | syl12anc |  | 
						
							| 38 | 37 | ex |  | 
						
							| 39 | 13 38 | impbid2 |  | 
						
							| 40 | 10 39 | bitrid |  | 
						
							| 41 | 40 | eqabcdv |  | 
						
							| 42 | 41 | unieqd |  | 
						
							| 43 | 7 42 | eqtrid |  | 
						
							| 44 |  | simplr |  | 
						
							| 45 |  | ssrab2 |  | 
						
							| 46 | 45 | a1i |  | 
						
							| 47 |  | simprrl |  | 
						
							| 48 |  | n0 |  | 
						
							| 49 | 47 48 | sylib |  | 
						
							| 50 |  | imaeq2 |  | 
						
							| 51 | 50 | eleq1d |  | 
						
							| 52 | 51 | rspcev |  | 
						
							| 53 | 21 31 52 | syl2anc |  | 
						
							| 54 | 49 53 | exlimddv |  | 
						
							| 55 |  | rabn0 |  | 
						
							| 56 | 54 55 | sylibr |  | 
						
							| 57 | 9 | elrab |  | 
						
							| 58 |  | imaeq2 |  | 
						
							| 59 | 58 | eleq1d |  | 
						
							| 60 | 59 | elrab |  | 
						
							| 61 | 57 60 | anbi12i |  | 
						
							| 62 |  | simprrr |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 |  | simprlr |  | 
						
							| 65 |  | simprrr |  | 
						
							| 66 |  | sorpssi |  | 
						
							| 67 | 63 64 65 66 | syl12anc |  | 
						
							| 68 |  | f1of1 |  | 
						
							| 69 | 68 | ad3antrrr |  | 
						
							| 70 |  | simprll |  | 
						
							| 71 | 70 | elpwid |  | 
						
							| 72 |  | simprrl |  | 
						
							| 73 | 72 | elpwid |  | 
						
							| 74 |  | f1imass |  | 
						
							| 75 | 69 71 73 74 | syl12anc |  | 
						
							| 76 |  | f1imass |  | 
						
							| 77 | 69 73 71 76 | syl12anc |  | 
						
							| 78 | 75 77 | orbi12d |  | 
						
							| 79 | 67 78 | mpbid |  | 
						
							| 80 | 61 79 | sylan2b |  | 
						
							| 81 | 80 | ralrimivva |  | 
						
							| 82 |  | sorpss |  | 
						
							| 83 | 81 82 | sylibr |  | 
						
							| 84 |  | fin2i |  | 
						
							| 85 | 44 46 56 83 84 | syl22anc |  | 
						
							| 86 |  | imaeq2 |  | 
						
							| 87 | 86 | eleq1d |  | 
						
							| 88 | 9 | cbvrabv |  | 
						
							| 89 | 87 88 | elrab2 |  | 
						
							| 90 | 89 | simprbi |  | 
						
							| 91 | 85 90 | syl |  | 
						
							| 92 | 43 91 | eqeltrrd |  | 
						
							| 93 | 92 | expr |  | 
						
							| 94 | 2 93 | sylan2 |  | 
						
							| 95 | 94 | ralrimiva |  | 
						
							| 96 | 95 | ex |  | 
						
							| 97 | 96 | exlimiv |  | 
						
							| 98 | 1 97 | sylbi |  | 
						
							| 99 |  | relen |  | 
						
							| 100 | 99 | brrelex2i |  | 
						
							| 101 |  | isfin2 |  | 
						
							| 102 | 100 101 | syl |  | 
						
							| 103 | 98 102 | sylibrd |  |