Metamath Proof Explorer


Theorem enfin2i

Description: II-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015)

Ref Expression
Assertion enfin2i ABAFinIIBFinII

Proof

Step Hyp Ref Expression
1 bren ABff:A1-1 ontoB
2 elpwi x𝒫𝒫Bx𝒫B
3 imauni fy𝒫A|fyx=zy𝒫A|fyxfz
4 vex fV
5 4 imaex fzV
6 5 dfiun2 zy𝒫A|fyxfz=w|zy𝒫A|fyxw=fz
7 3 6 eqtri fy𝒫A|fyx=w|zy𝒫A|fyxw=fz
8 imaeq2 y=zfy=fz
9 8 eleq1d y=zfyxfzx
10 9 rexrab zy𝒫A|fyxw=fzz𝒫Afzxw=fz
11 eleq1 w=fzwxfzx
12 11 biimparc fzxw=fzwx
13 12 rexlimivw z𝒫Afzxw=fzwx
14 cnvimass f-1wdomf
15 f1odm f:A1-1 ontoBdomf=A
16 15 ad3antrrr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxdomf=A
17 14 16 sseqtrid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxf-1wA
18 4 cnvex f-1V
19 18 imaex f-1wV
20 19 elpw f-1w𝒫Af-1wA
21 17 20 sylibr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxf-1w𝒫A
22 f1ofo f:A1-1 ontoBf:AontoB
23 22 ad3antrrr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxf:AontoB
24 simprl f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxx𝒫B
25 24 sselda f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxw𝒫B
26 25 elpwid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]OrxwxwB
27 foimacnv f:AontoBwBff-1w=w
28 23 26 27 syl2anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxff-1w=w
29 28 eqcomd f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxw=ff-1w
30 simpr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxwx
31 29 30 eqeltrrd f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxff-1wx
32 imaeq2 z=f-1wfz=ff-1w
33 32 eleq1d z=f-1wfzxff-1wx
34 32 eqeq2d z=f-1ww=fzw=ff-1w
35 33 34 anbi12d z=f-1wfzxw=fzff-1wxw=ff-1w
36 35 rspcev f-1w𝒫Aff-1wxw=ff-1wz𝒫Afzxw=fz
37 21 31 29 36 syl12anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxz𝒫Afzxw=fz
38 37 ex f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxz𝒫Afzxw=fz
39 13 38 impbid2 f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw=fzwx
40 10 39 bitrid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxzy𝒫A|fyxw=fzwx
41 40 eqabcdv f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxw|zy𝒫A|fyxw=fz=x
42 41 unieqd f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxw|zy𝒫A|fyxw=fz=x
43 7 42 eqtrid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxfy𝒫A|fyx=x
44 simplr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]OrxAFinII
45 ssrab2 y𝒫A|fyx𝒫A
46 45 a1i f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxy𝒫A|fyx𝒫A
47 simprrl f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxx
48 n0 xwwx
49 47 48 sylib f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwwx
50 imaeq2 y=f-1wfy=ff-1w
51 50 eleq1d y=f-1wfyxff-1wx
52 51 rspcev f-1w𝒫Aff-1wxy𝒫Afyx
53 21 31 52 syl2anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxwxy𝒫Afyx
54 49 53 exlimddv f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxy𝒫Afyx
55 rabn0 y𝒫A|fyxy𝒫Afyx
56 54 55 sylibr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxy𝒫A|fyx
57 9 elrab zy𝒫A|fyxz𝒫Afzx
58 imaeq2 y=wfy=fw
59 58 eleq1d y=wfyxfwx
60 59 elrab wy𝒫A|fyxw𝒫Afwx
61 57 60 anbi12i zy𝒫A|fyxwy𝒫A|fyxz𝒫Afzxw𝒫Afwx
62 simprrr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orx[⊂]Orx
63 62 adantr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwx[⊂]Orx
64 simprlr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfzx
65 simprrr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfwx
66 sorpssi [⊂]Orxfzxfwxfzfwfwfz
67 63 64 65 66 syl12anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfzfwfwfz
68 f1of1 f:A1-1 ontoBf:A1-1B
69 68 ad3antrrr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxf:A1-1B
70 simprll f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxz𝒫A
71 70 elpwid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫AfwxzA
72 simprrl f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxw𝒫A
73 72 elpwid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫AfwxwA
74 f1imass f:A1-1BzAwAfzfwzw
75 69 71 73 74 syl12anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfzfwzw
76 f1imass f:A1-1BwAzAfwfzwz
77 69 73 71 76 syl12anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfwfzwz
78 75 77 orbi12d f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxfzfwfwfzzwwz
79 67 78 mpbid f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxz𝒫Afzxw𝒫Afwxzwwz
80 61 79 sylan2b f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxzy𝒫A|fyxwy𝒫A|fyxzwwz
81 80 ralrimivva f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxzy𝒫A|fyxwy𝒫A|fyxzwwz
82 sorpss [⊂]Ory𝒫A|fyxzy𝒫A|fyxwy𝒫A|fyxzwwz
83 81 82 sylibr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orx[⊂]Ory𝒫A|fyx
84 fin2i AFinIIy𝒫A|fyx𝒫Ay𝒫A|fyx[⊂]Ory𝒫A|fyxy𝒫A|fyxy𝒫A|fyx
85 44 46 56 83 84 syl22anc f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxy𝒫A|fyxy𝒫A|fyx
86 imaeq2 z=y𝒫A|fyxfz=fy𝒫A|fyx
87 86 eleq1d z=y𝒫A|fyxfzxfy𝒫A|fyxx
88 9 cbvrabv y𝒫A|fyx=z𝒫A|fzx
89 87 88 elrab2 y𝒫A|fyxy𝒫A|fyxy𝒫A|fyx𝒫Afy𝒫A|fyxx
90 89 simprbi y𝒫A|fyxy𝒫A|fyxfy𝒫A|fyxx
91 85 90 syl f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxfy𝒫A|fyxx
92 43 91 eqeltrrd f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxxx
93 92 expr f:A1-1 ontoBAFinIIx𝒫Bx[⊂]Orxxx
94 2 93 sylan2 f:A1-1 ontoBAFinIIx𝒫𝒫Bx[⊂]Orxxx
95 94 ralrimiva f:A1-1 ontoBAFinIIx𝒫𝒫Bx[⊂]Orxxx
96 95 ex f:A1-1 ontoBAFinIIx𝒫𝒫Bx[⊂]Orxxx
97 96 exlimiv ff:A1-1 ontoBAFinIIx𝒫𝒫Bx[⊂]Orxxx
98 1 97 sylbi ABAFinIIx𝒫𝒫Bx[⊂]Orxxx
99 relen Rel
100 99 brrelex2i ABBV
101 isfin2 BVBFinIIx𝒫𝒫Bx[⊂]Orxxx
102 100 101 syl ABBFinIIx𝒫𝒫Bx[⊂]Orxxx
103 98 102 sylibrd ABAFinIIBFinII