Metamath Proof Explorer


Theorem erdsze2lem2

Description: Lemma for erdsze2 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φR
erdsze2.s φS
erdsze2.f φF:A1-1
erdsze2.a φA
erdsze2lem.n N=R1S1
erdsze2lem.l φN<A
erdsze2lem.g φG:1N+11-1A
erdsze2lem.i φGIsom<,<1N+1ranG
Assertion erdsze2lem2 φs𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs

Proof

Step Hyp Ref Expression
1 erdsze2.r φR
2 erdsze2.s φS
3 erdsze2.f φF:A1-1
4 erdsze2.a φA
5 erdsze2lem.n N=R1S1
6 erdsze2lem.l φN<A
7 erdsze2lem.g φG:1N+11-1A
8 erdsze2lem.i φGIsom<,<1N+1ranG
9 nnm1nn0 RR10
10 1 9 syl φR10
11 nnm1nn0 SS10
12 2 11 syl φS10
13 10 12 nn0mulcld φR1S10
14 5 13 eqeltrid φN0
15 nn0p1nn N0N+1
16 14 15 syl φN+1
17 f1co F:A1-1G:1N+11-1AFG:1N+11-1
18 3 7 17 syl2anc φFG:1N+11-1
19 14 nn0red φN
20 19 ltp1d φN<N+1
21 5 20 eqbrtrrid φR1S1<N+1
22 16 18 1 2 21 erdsze φt𝒫1N+1RtFGtIsom<,<tFGtStFGtIsom<,<-1tFGt
23 velpw t𝒫1N+1t1N+1
24 imassrn GtranG
25 f1f G:1N+11-1AG:1N+1A
26 7 25 syl φG:1N+1A
27 26 frnd φranGA
28 24 27 sstrid φGtA
29 reex V
30 ssexg AVAV
31 4 29 30 sylancl φAV
32 elpw2g AVGt𝒫AGtA
33 31 32 syl φGt𝒫AGtA
34 28 33 mpbird φGt𝒫A
35 34 adantr φt1N+1Gt𝒫A
36 vex tV
37 36 f1imaen G:1N+11-1At1N+1Gtt
38 7 37 sylan φt1N+1Gtt
39 fzfid φt1N+11N+1Fin
40 simpr φt1N+1t1N+1
41 ssfi 1N+1Fint1N+1tFin
42 39 40 41 syl2anc φt1N+1tFin
43 enfii tFinGttGtFin
44 42 38 43 syl2anc φt1N+1GtFin
45 hashen GtFintFinGt=tGtt
46 44 42 45 syl2anc φt1N+1Gt=tGtt
47 38 46 mpbird φt1N+1Gt=t
48 47 breq2d φt1N+1RGtRt
49 48 biimprd φt1N+1RtRGt
50 8 ad2antrr φt1N+1xtytGIsom<,<1N+1ranG
51 40 adantr φt1N+1xtytt1N+1
52 simprl φt1N+1xtytxt
53 51 52 sseldd φt1N+1xtytx1N+1
54 simprr φt1N+1xtytyt
55 51 54 sseldd φt1N+1xtyty1N+1
56 isorel GIsom<,<1N+1ranGx1N+1y1N+1x<yGx<Gy
57 50 53 55 56 syl12anc φt1N+1xtytx<yGx<Gy
58 57 biimpd φt1N+1xtytx<yGx<Gy
59 58 ralrimivva φt1N+1xtytx<yGx<Gy
60 elfznn t1N+1t
61 60 nnred t1N+1t
62 61 ssriv 1N+1
63 62 a1i φt1N+11N+1
64 ltso <Or
65 soss 1N+1<Or<Or1N+1
66 63 64 65 mpisyl φt1N+1<Or1N+1
67 4 adantr φt1N+1A
68 soss A<Or<OrA
69 67 64 68 mpisyl φt1N+1<OrA
70 26 adantr φt1N+1G:1N+1A
71 soisores <Or1N+1<OrAG:1N+1At1N+1GtIsom<,<tGtxtytx<yGx<Gy
72 66 69 70 40 71 syl22anc φt1N+1GtIsom<,<tGtxtytx<yGx<Gy
73 59 72 mpbird φt1N+1GtIsom<,<tGt
74 isocnv GtIsom<,<tGtGt-1Isom<,<Gtt
75 73 74 syl φt1N+1Gt-1Isom<,<Gtt
76 isotr Gt-1Isom<,<GttFGtIsom<,<tFGtFGtGt-1Isom<,<GtFGt
77 76 ex Gt-1Isom<,<GttFGtIsom<,<tFGtFGtGt-1Isom<,<GtFGt
78 75 77 syl φt1N+1FGtIsom<,<tFGtFGtGt-1Isom<,<GtFGt
79 resco FGt=FGt
80 79 coeq1i FGtGt-1=FGtGt-1
81 coass FGtGt-1=FGtGt-1
82 80 81 eqtri FGtGt-1=FGtGt-1
83 f1ores G:1N+11-1At1N+1Gt:t1-1 ontoGt
84 7 83 sylan φt1N+1Gt:t1-1 ontoGt
85 f1ococnv2 Gt:t1-1 ontoGtGtGt-1=IGt
86 84 85 syl φt1N+1GtGt-1=IGt
87 86 coeq2d φt1N+1FGtGt-1=FIGt
88 coires1 FIGt=FGt
89 87 88 eqtrdi φt1N+1FGtGt-1=FGt
90 82 89 eqtrid φt1N+1FGtGt-1=FGt
91 isoeq1 FGtGt-1=FGtFGtGt-1Isom<,<GtFGtFGtIsom<,<GtFGt
92 90 91 syl φt1N+1FGtGt-1Isom<,<GtFGtFGtIsom<,<GtFGt
93 imaco FGt=FGt
94 isoeq5 FGt=FGtFGtIsom<,<GtFGtFGtIsom<,<GtFGt
95 93 94 ax-mp FGtIsom<,<GtFGtFGtIsom<,<GtFGt
96 92 95 bitrdi φt1N+1FGtGt-1Isom<,<GtFGtFGtIsom<,<GtFGt
97 78 96 sylibd φt1N+1FGtIsom<,<tFGtFGtIsom<,<GtFGt
98 49 97 anim12d φt1N+1RtFGtIsom<,<tFGtRGtFGtIsom<,<GtFGt
99 47 breq2d φt1N+1SGtSt
100 99 biimprd φt1N+1StSGt
101 isotr Gt-1Isom<,<GttFGtIsom<,<-1tFGtFGtGt-1Isom<,<-1GtFGt
102 101 ex Gt-1Isom<,<GttFGtIsom<,<-1tFGtFGtGt-1Isom<,<-1GtFGt
103 75 102 syl φt1N+1FGtIsom<,<-1tFGtFGtGt-1Isom<,<-1GtFGt
104 isoeq1 FGtGt-1=FGtFGtGt-1Isom<,<-1GtFGtFGtIsom<,<-1GtFGt
105 90 104 syl φt1N+1FGtGt-1Isom<,<-1GtFGtFGtIsom<,<-1GtFGt
106 isoeq5 FGt=FGtFGtIsom<,<-1GtFGtFGtIsom<,<-1GtFGt
107 93 106 ax-mp FGtIsom<,<-1GtFGtFGtIsom<,<-1GtFGt
108 105 107 bitrdi φt1N+1FGtGt-1Isom<,<-1GtFGtFGtIsom<,<-1GtFGt
109 103 108 sylibd φt1N+1FGtIsom<,<-1tFGtFGtIsom<,<-1GtFGt
110 100 109 anim12d φt1N+1StFGtIsom<,<-1tFGtSGtFGtIsom<,<-1GtFGt
111 98 110 orim12d φt1N+1RtFGtIsom<,<tFGtStFGtIsom<,<-1tFGtRGtFGtIsom<,<GtFGtSGtFGtIsom<,<-1GtFGt
112 fveq2 s=Gts=Gt
113 112 breq2d s=GtRsRGt
114 reseq2 s=GtFs=FGt
115 isoeq1 Fs=FGtFsIsom<,<sFsFGtIsom<,<sFs
116 114 115 syl s=GtFsIsom<,<sFsFGtIsom<,<sFs
117 isoeq4 s=GtFGtIsom<,<sFsFGtIsom<,<GtFs
118 imaeq2 s=GtFs=FGt
119 isoeq5 Fs=FGtFGtIsom<,<GtFsFGtIsom<,<GtFGt
120 118 119 syl s=GtFGtIsom<,<GtFsFGtIsom<,<GtFGt
121 116 117 120 3bitrd s=GtFsIsom<,<sFsFGtIsom<,<GtFGt
122 113 121 anbi12d s=GtRsFsIsom<,<sFsRGtFGtIsom<,<GtFGt
123 112 breq2d s=GtSsSGt
124 isoeq1 Fs=FGtFsIsom<,<-1sFsFGtIsom<,<-1sFs
125 114 124 syl s=GtFsIsom<,<-1sFsFGtIsom<,<-1sFs
126 isoeq4 s=GtFGtIsom<,<-1sFsFGtIsom<,<-1GtFs
127 isoeq5 Fs=FGtFGtIsom<,<-1GtFsFGtIsom<,<-1GtFGt
128 118 127 syl s=GtFGtIsom<,<-1GtFsFGtIsom<,<-1GtFGt
129 125 126 128 3bitrd s=GtFsIsom<,<-1sFsFGtIsom<,<-1GtFGt
130 123 129 anbi12d s=GtSsFsIsom<,<-1sFsSGtFGtIsom<,<-1GtFGt
131 122 130 orbi12d s=GtRsFsIsom<,<sFsSsFsIsom<,<-1sFsRGtFGtIsom<,<GtFGtSGtFGtIsom<,<-1GtFGt
132 131 rspcev Gt𝒫ARGtFGtIsom<,<GtFGtSGtFGtIsom<,<-1GtFGts𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs
133 35 111 132 syl6an φt1N+1RtFGtIsom<,<tFGtStFGtIsom<,<-1tFGts𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs
134 23 133 sylan2b φt𝒫1N+1RtFGtIsom<,<tFGtStFGtIsom<,<-1tFGts𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs
135 134 rexlimdva φt𝒫1N+1RtFGtIsom<,<tFGtStFGtIsom<,<-1tFGts𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs
136 22 135 mpd φs𝒫ARsFsIsom<,<sFsSsFsIsom<,<-1sFs