Metamath Proof Explorer


Theorem etransclem28

Description: ( P - 1 ) factorial divides the N -th derivative of F applied to J . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem28.p φP
etransclem28.m φM0
etransclem28.n φN0
etransclem28.c C=n0c0n0M|j=0Mcj=n
etransclem28.d φDCN
etransclem28.j φJ0M
etransclem28.t T=N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
Assertion etransclem28 φP1!T

Proof

Step Hyp Ref Expression
1 etransclem28.p φP
2 etransclem28.m φM0
3 etransclem28.n φN0
4 etransclem28.c C=n0c0n0M|j=0Mcj=n
5 etransclem28.d φDCN
6 etransclem28.j φJ0M
7 etransclem28.t T=N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
8 nnm1nn0 PP10
9 1 8 syl φP10
10 9 faccld φP1!
11 10 nnzd φP1!
12 11 adantr φJ=0P1!
13 4 3 etransclem12 φCN=c0N0M|j=0Mcj=N
14 5 13 eleqtrd φDc0N0M|j=0Mcj=N
15 fveq1 c=Dcj=Dj
16 15 sumeq2sdv c=Dj=0Mcj=j=0MDj
17 16 eqeq1d c=Dj=0Mcj=Nj=0MDj=N
18 17 elrab Dc0N0M|j=0Mcj=ND0N0Mj=0MDj=N
19 18 simprbi Dc0N0M|j=0Mcj=Nj=0MDj=N
20 14 19 syl φj=0MDj=N
21 20 eqcomd φN=j=0MDj
22 21 fveq2d φN!=j=0MDj!
23 22 oveq1d φN!j=0MDj!=j=0MDj!j=0MDj!
24 nfcv _jD
25 fzfid φ0MFin
26 nn0ex 0V
27 fzssnn0 0N0
28 27 a1i Dc0N0M|j=0Mcj=N0N0
29 mapss 0V0N00N0M00M
30 26 28 29 sylancr Dc0N0M|j=0Mcj=N0N0M00M
31 elrabi Dc0N0M|j=0Mcj=ND0N0M
32 30 31 sseldd Dc0N0M|j=0Mcj=ND00M
33 14 32 syl φD00M
34 24 25 33 mccl φj=0MDj!j=0MDj!
35 23 34 eqeltrd φN!j=0MDj!
36 35 nnzd φN!j=0MDj!
37 36 adantr φJ=0N!j=0MDj!
38 df-neg j=0j
39 oveq1 J=0Jj=0j
40 38 39 eqtr4id J=0j=Jj
41 40 oveq1d J=0jPDj=JjPDj
42 41 oveq2d J=0P!PDj!jPDj=P!PDj!JjPDj
43 42 ifeq2d J=0ifP<Dj0P!PDj!jPDj=ifP<Dj0P!PDj!JjPDj
44 43 prodeq2ad J=0j=1MifP<Dj0P!PDj!jPDj=j=1MifP<Dj0P!PDj!JjPDj
45 44 adantl φJ=0j=1MifP<Dj0P!PDj!jPDj=j=1MifP<Dj0P!PDj!JjPDj
46 14 31 syl φD0N0M
47 elmapi D0N0MD:0M0N
48 46 47 syl φD:0M0N
49 1 48 6 etransclem7 φj=1MifP<Dj0P!PDj!JjPDj
50 49 adantr φJ=0j=1MifP<Dj0P!PDj!JjPDj
51 45 50 eqeltrd φJ=0j=1MifP<Dj0P!PDj!jPDj
52 12 51 zmulcld φJ=0P1!j=1MifP<Dj0P!PDj!jPDj
53 12 37 52 3jca φJ=0P1!N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDj
54 dvdsmul1 P1!j=1MifP<Dj0P!PDj!jPDjP1!P1!j=1MifP<Dj0P!PDj!jPDj
55 12 51 54 syl2anc φJ=0P1!P1!j=1MifP<Dj0P!PDj!jPDj
56 dvdsmultr2 P1!N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDjP1!P1!j=1MifP<Dj0P!PDj!jPDjP1!N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDj
57 53 55 56 sylc φJ=0P1!N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDj
58 57 adantr φJ=0D0=P1P1!N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDj
59 1 ad2antrr φJ=0D0=P1P
60 2 ad2antrr φJ=0D0=P1M0
61 48 ad2antrr φJ=0D0=P1D:0M0N
62 eqid N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
63 simplr φJ=0D0=P1J=0
64 simpr φJ=0D0=P1D0=P1
65 59 60 61 62 63 64 etransclem14 φJ=0D0=P1N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=N!j=0MDj!P1!j=1MifP<Dj0P!PDj!jPDj
66 58 65 breqtrrd φJ=0D0=P1P1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
67 dvds0 P1!P1!0
68 11 67 syl φP1!0
69 68 ad2antrr φJ=0¬D0=P1P1!0
70 1 ad2antrr φJ=0¬D0=P1P
71 2 ad2antrr φJ=0¬D0=P1M0
72 3 ad2antrr φJ=0¬D0=P1N0
73 48 ad2antrr φJ=0¬D0=P1D:0M0N
74 simplr φJ=0¬D0=P1J=0
75 neqne ¬D0=P1D0P1
76 75 adantl φJ=0¬D0=P1D0P1
77 70 71 72 73 62 74 76 etransclem15 φJ=0¬D0=P1N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj=0
78 69 77 breqtrrd φJ=0¬D0=P1P1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
79 66 78 pm2.61dan φJ=0P1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
80 1 nnzd φP
81 elfznn0 J0MJ0
82 6 81 syl φJ0
83 82 nn0zd φJ
84 1 2 3 83 4 5 etransclem26 φN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
85 11 80 84 3jca φP1!PN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
86 85 adantr φ¬J=0P1!PN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
87 1 nncnd φP
88 1cnd φ1
89 87 88 npcand φP-1+1=P
90 89 eqcomd φP=P-1+1
91 90 fveq2d φP!=P-1+1!
92 facp1 P10P-1+1!=P1!P-1+1
93 9 92 syl φP-1+1!=P1!P-1+1
94 89 oveq2d φP1!P-1+1=P1!P
95 91 93 94 3eqtrrd φP1!P=P!
96 95 adantr φ¬J=0P1!P=P!
97 1 adantr φ¬J=0P
98 2 adantr φ¬J=0M0
99 3 adantr φ¬J=0N0
100 48 adantr φ¬J=0D:0M0N
101 20 adantr φ¬J=0j=0MDj=N
102 1zzd φ¬J=01
103 2 nn0zd φM
104 103 adantr φ¬J=0M
105 83 adantr φ¬J=0J
106 82 adantr φ¬J=0J0
107 neqne ¬J=0J0
108 107 adantl φ¬J=0J0
109 elnnne0 JJ0J0
110 106 108 109 sylanbrc φ¬J=0J
111 110 nnge1d φ¬J=01J
112 elfzle2 J0MJM
113 6 112 syl φJM
114 113 adantr φ¬J=0JM
115 102 104 105 111 114 elfzd φ¬J=0J1M
116 97 98 99 100 101 62 115 etransclem25 φ¬J=0P!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
117 96 116 eqbrtrd φ¬J=0P1!PN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
118 muldvds1 P1!PN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!PN!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDjP1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
119 86 117 118 sylc φ¬J=0P1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
120 79 119 pm2.61dan φP1!N!j=0MDj!ifP1<D00P1!P-1-D0!JP-1-D0j=1MifP<Dj0P!PDj!JjPDj
121 120 7 breqtrrdi φP1!T