Metamath Proof Explorer


Theorem fmfnfmlem4

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φBfBasY
fmfnfm.l φLFilX
fmfnfm.f φF:YX
fmfnfm.fm φXFilMapFBL
Assertion fmfnfmlem4 φtLtXsfiBranxLF-1xFst

Proof

Step Hyp Ref Expression
1 fmfnfm.b φBfBasY
2 fmfnfm.l φLFilX
3 fmfnfm.f φF:YX
4 fmfnfm.fm φXFilMapFBL
5 filelss LFilXtLtX
6 5 ex LFilXtLtX
7 2 6 syl φtLtX
8 mptexg LFilXxLF-1xV
9 rnexg xLF-1xVranxLF-1xV
10 8 9 syl LFilXranxLF-1xV
11 2 10 syl φranxLF-1xV
12 unexg BfBasYranxLF-1xVBranxLF-1xV
13 1 11 12 syl2anc φBranxLF-1xV
14 ssfii BranxLF-1xVBranxLF-1xfiBranxLF-1x
15 14 unssbd BranxLF-1xVranxLF-1xfiBranxLF-1x
16 13 15 syl φranxLF-1xfiBranxLF-1x
17 16 adantr φtLranxLF-1xfiBranxLF-1x
18 eqid F-1t=F-1t
19 imaeq2 x=tF-1x=F-1t
20 19 rspceeqv tLF-1t=F-1txLF-1t=F-1x
21 18 20 mpan2 tLxLF-1t=F-1x
22 21 adantl φtLxLF-1t=F-1x
23 elfvdm BfBasYYdomfBas
24 1 23 syl φYdomfBas
25 cnvimass F-1tdomF
26 25 3 fssdm φF-1tY
27 24 26 ssexd φF-1tV
28 27 adantr φtLF-1tV
29 eqid xLF-1x=xLF-1x
30 29 elrnmpt F-1tVF-1tranxLF-1xxLF-1t=F-1x
31 28 30 syl φtLF-1tranxLF-1xxLF-1t=F-1x
32 22 31 mpbird φtLF-1tranxLF-1x
33 17 32 sseldd φtLF-1tfiBranxLF-1x
34 ffun F:YXFunF
35 ssid F-1tF-1t
36 funimass2 FunFF-1tF-1tFF-1tt
37 34 35 36 sylancl F:YXFF-1tt
38 3 37 syl φFF-1tt
39 38 adantr φtLFF-1tt
40 imaeq2 s=F-1tFs=FF-1t
41 40 sseq1d s=F-1tFstFF-1tt
42 41 rspcev F-1tfiBranxLF-1xFF-1ttsfiBranxLF-1xFst
43 33 39 42 syl2anc φtLsfiBranxLF-1xFst
44 43 ex φtLsfiBranxLF-1xFst
45 7 44 jcad φtLtXsfiBranxLF-1xFst
46 elfiun BfBasYranxLF-1xVsfiBranxLF-1xsfiBsfiranxLF-1xzfiBwfiranxLF-1xs=zw
47 1 11 46 syl2anc φsfiBranxLF-1xsfiBsfiranxLF-1xzfiBwfiranxLF-1xs=zw
48 1 2 3 4 fmfnfmlem1 φsfiBFsttXtL
49 1 2 3 4 fmfnfmlem3 φfiranxLF-1x=ranxLF-1x
50 49 eleq2d φsfiranxLF-1xsranxLF-1x
51 29 elrnmpt sVsranxLF-1xxLs=F-1x
52 51 elv sranxLF-1xxLs=F-1x
53 1 2 3 4 fmfnfmlem2 φxLs=F-1xFsttXtL
54 52 53 biimtrid φsranxLF-1xFsttXtL
55 50 54 sylbid φsfiranxLF-1xFsttXtL
56 49 eleq2d φwfiranxLF-1xwranxLF-1x
57 29 elrnmpt wVwranxLF-1xxLw=F-1x
58 57 elv wranxLF-1xxLw=F-1x
59 56 58 bitrdi φwfiranxLF-1xxLw=F-1x
60 59 adantr φzfiBwfiranxLF-1xxLw=F-1x
61 fbssfi BfBasYzfiBsBsz
62 1 61 sylan φzfiBsBsz
63 2 ad3antrrr φsBszxLFzF-1xttXLFilX
64 2 adantr φsBszLFilX
65 4 adantr φsBXFilMapFBL
66 filtop LFilXXL
67 2 66 syl φXL
68 67 1 3 3jca φXLBfBasYF:YX
69 68 adantr φsBXLBfBasYF:YX
70 ssfg BfBasYBYfilGenB
71 1 70 syl φBYfilGenB
72 71 sselda φsBsYfilGenB
73 eqid YfilGenB=YfilGenB
74 73 imaelfm XLBfBasYF:YXsYfilGenBFsXFilMapFB
75 69 72 74 syl2anc φsBFsXFilMapFB
76 65 75 sseldd φsBFsL
77 76 adantrr φsBszFsL
78 64 77 jca φsBszLFilXFsL
79 filin LFilXFsLxLFsxL
80 79 3expa LFilXFsLxLFsxL
81 78 80 sylan φsBszxLFsxL
82 81 adantr φsBszxLFzF-1xttXFsxL
83 simprr φsBszxLFzF-1xttXtX
84 elin wFsxwFswx
85 3 34 syl φFunF
86 fvelima FunFwFsysFy=w
87 86 ex FunFwFsysFy=w
88 85 87 syl φwFsysFy=w
89 88 ad3antrrr φsBszxLtXwFsysFy=w
90 85 ad3antrrr φsBszxLtXysFyxFunF
91 simplrr φsBszxLsz
92 simprl tXysFyxys
93 ssel2 szysyz
94 91 92 93 syl2an φsBszxLtXysFyxyz
95 85 ad2antrr φsBszysFunF
96 fbelss BfBasYsBsY
97 1 96 sylan φsBsY
98 3 fdmd φdomF=Y
99 98 adantr φsBdomF=Y
100 97 99 sseqtrrd φsBsdomF
101 100 adantrr φsBszsdomF
102 101 sselda φsBszysydomF
103 fvimacnv FunFydomFFyxyF-1x
104 95 102 103 syl2anc φsBszysFyxyF-1x
105 104 biimpd φsBszysFyxyF-1x
106 105 impr φsBszysFyxyF-1x
107 106 ad2ant2rl φsBszxLtXysFyxyF-1x
108 94 107 elind φsBszxLtXysFyxyzF-1x
109 inss2 zF-1xF-1x
110 cnvimass F-1xdomF
111 109 110 sstri zF-1xdomF
112 funfvima2 FunFzF-1xdomFyzF-1xFyFzF-1x
113 111 112 mpan2 FunFyzF-1xFyFzF-1x
114 90 108 113 sylc φsBszxLtXysFyxFyFzF-1x
115 114 anassrs φsBszxLtXysFyxFyFzF-1x
116 115 expr φsBszxLtXysFyxFyFzF-1x
117 eleq1 Fy=wFyxwx
118 eleq1 Fy=wFyFzF-1xwFzF-1x
119 117 118 imbi12d Fy=wFyxFyFzF-1xwxwFzF-1x
120 116 119 syl5ibcom φsBszxLtXysFy=wwxwFzF-1x
121 120 rexlimdva φsBszxLtXysFy=wwxwFzF-1x
122 89 121 syld φsBszxLtXwFswxwFzF-1x
123 122 impd φsBszxLtXwFswxwFzF-1x
124 84 123 biimtrid φsBszxLtXwFsxwFzF-1x
125 124 adantrl φsBszxLFzF-1xttXwFsxwFzF-1x
126 125 ssrdv φsBszxLFzF-1xttXFsxFzF-1x
127 simprl φsBszxLFzF-1xttXFzF-1xt
128 126 127 sstrd φsBszxLFzF-1xttXFsxt
129 filss LFilXFsxLtXFsxttL
130 63 82 83 128 129 syl13anc φsBszxLFzF-1xttXtL
131 130 exp32 φsBszxLFzF-1xttXtL
132 ineq2 w=F-1xzw=zF-1x
133 132 imaeq2d w=F-1xFzw=FzF-1x
134 133 sseq1d w=F-1xFzwtFzF-1xt
135 134 imbi1d w=F-1xFzwttXtLFzF-1xttXtL
136 131 135 syl5ibrcom φsBszxLw=F-1xFzwttXtL
137 136 rexlimdva φsBszxLw=F-1xFzwttXtL
138 137 rexlimdvaa φsBszxLw=F-1xFzwttXtL
139 138 imp φsBszxLw=F-1xFzwttXtL
140 62 139 syldan φzfiBxLw=F-1xFzwttXtL
141 60 140 sylbid φzfiBwfiranxLF-1xFzwttXtL
142 141 impr φzfiBwfiranxLF-1xFzwttXtL
143 imaeq2 s=zwFs=Fzw
144 143 sseq1d s=zwFstFzwt
145 144 imbi1d s=zwFsttXtLFzwttXtL
146 142 145 syl5ibrcom φzfiBwfiranxLF-1xs=zwFsttXtL
147 146 rexlimdvva φzfiBwfiranxLF-1xs=zwFsttXtL
148 48 55 147 3jaod φsfiBsfiranxLF-1xzfiBwfiranxLF-1xs=zwFsttXtL
149 47 148 sylbid φsfiBranxLF-1xFsttXtL
150 149 rexlimdv φsfiBranxLF-1xFsttXtL
151 150 impcomd φtXsfiBranxLF-1xFsttL
152 45 151 impbid φtLtXsfiBranxLF-1xFst