| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmfnfm.b |
|
| 2 |
|
fmfnfm.l |
|
| 3 |
|
fmfnfm.f |
|
| 4 |
|
fmfnfm.fm |
|
| 5 |
|
filelss |
|
| 6 |
5
|
ex |
|
| 7 |
2 6
|
syl |
|
| 8 |
|
mptexg |
|
| 9 |
|
rnexg |
|
| 10 |
8 9
|
syl |
|
| 11 |
2 10
|
syl |
|
| 12 |
|
unexg |
|
| 13 |
1 11 12
|
syl2anc |
|
| 14 |
|
ssfii |
|
| 15 |
14
|
unssbd |
|
| 16 |
13 15
|
syl |
|
| 17 |
16
|
adantr |
|
| 18 |
|
eqid |
|
| 19 |
|
imaeq2 |
|
| 20 |
19
|
rspceeqv |
|
| 21 |
18 20
|
mpan2 |
|
| 22 |
21
|
adantl |
|
| 23 |
|
elfvdm |
|
| 24 |
1 23
|
syl |
|
| 25 |
|
cnvimass |
|
| 26 |
25 3
|
fssdm |
|
| 27 |
24 26
|
ssexd |
|
| 28 |
27
|
adantr |
|
| 29 |
|
eqid |
|
| 30 |
29
|
elrnmpt |
|
| 31 |
28 30
|
syl |
|
| 32 |
22 31
|
mpbird |
|
| 33 |
17 32
|
sseldd |
|
| 34 |
|
ffun |
|
| 35 |
|
ssid |
|
| 36 |
|
funimass2 |
|
| 37 |
34 35 36
|
sylancl |
|
| 38 |
3 37
|
syl |
|
| 39 |
38
|
adantr |
|
| 40 |
|
imaeq2 |
|
| 41 |
40
|
sseq1d |
|
| 42 |
41
|
rspcev |
|
| 43 |
33 39 42
|
syl2anc |
|
| 44 |
43
|
ex |
|
| 45 |
7 44
|
jcad |
|
| 46 |
|
elfiun |
|
| 47 |
1 11 46
|
syl2anc |
|
| 48 |
1 2 3 4
|
fmfnfmlem1 |
|
| 49 |
1 2 3 4
|
fmfnfmlem3 |
|
| 50 |
49
|
eleq2d |
|
| 51 |
29
|
elrnmpt |
|
| 52 |
51
|
elv |
|
| 53 |
1 2 3 4
|
fmfnfmlem2 |
|
| 54 |
52 53
|
biimtrid |
|
| 55 |
50 54
|
sylbid |
|
| 56 |
49
|
eleq2d |
|
| 57 |
29
|
elrnmpt |
|
| 58 |
57
|
elv |
|
| 59 |
56 58
|
bitrdi |
|
| 60 |
59
|
adantr |
|
| 61 |
|
fbssfi |
|
| 62 |
1 61
|
sylan |
|
| 63 |
2
|
ad3antrrr |
|
| 64 |
2
|
adantr |
|
| 65 |
4
|
adantr |
|
| 66 |
|
filtop |
|
| 67 |
2 66
|
syl |
|
| 68 |
67 1 3
|
3jca |
|
| 69 |
68
|
adantr |
|
| 70 |
|
ssfg |
|
| 71 |
1 70
|
syl |
|
| 72 |
71
|
sselda |
|
| 73 |
|
eqid |
|
| 74 |
73
|
imaelfm |
|
| 75 |
69 72 74
|
syl2anc |
|
| 76 |
65 75
|
sseldd |
|
| 77 |
76
|
adantrr |
|
| 78 |
64 77
|
jca |
|
| 79 |
|
filin |
|
| 80 |
79
|
3expa |
|
| 81 |
78 80
|
sylan |
|
| 82 |
81
|
adantr |
|
| 83 |
|
simprr |
|
| 84 |
|
elin |
|
| 85 |
3 34
|
syl |
|
| 86 |
|
fvelima |
|
| 87 |
86
|
ex |
|
| 88 |
85 87
|
syl |
|
| 89 |
88
|
ad3antrrr |
|
| 90 |
85
|
ad3antrrr |
|
| 91 |
|
simplrr |
|
| 92 |
|
simprl |
|
| 93 |
|
ssel2 |
|
| 94 |
91 92 93
|
syl2an |
|
| 95 |
85
|
ad2antrr |
|
| 96 |
|
fbelss |
|
| 97 |
1 96
|
sylan |
|
| 98 |
3
|
fdmd |
|
| 99 |
98
|
adantr |
|
| 100 |
97 99
|
sseqtrrd |
|
| 101 |
100
|
adantrr |
|
| 102 |
101
|
sselda |
|
| 103 |
|
fvimacnv |
|
| 104 |
95 102 103
|
syl2anc |
|
| 105 |
104
|
biimpd |
|
| 106 |
105
|
impr |
|
| 107 |
106
|
ad2ant2rl |
|
| 108 |
94 107
|
elind |
|
| 109 |
|
inss2 |
|
| 110 |
|
cnvimass |
|
| 111 |
109 110
|
sstri |
|
| 112 |
|
funfvima2 |
|
| 113 |
111 112
|
mpan2 |
|
| 114 |
90 108 113
|
sylc |
|
| 115 |
114
|
anassrs |
|
| 116 |
115
|
expr |
|
| 117 |
|
eleq1 |
|
| 118 |
|
eleq1 |
|
| 119 |
117 118
|
imbi12d |
|
| 120 |
116 119
|
syl5ibcom |
|
| 121 |
120
|
rexlimdva |
|
| 122 |
89 121
|
syld |
|
| 123 |
122
|
impd |
|
| 124 |
84 123
|
biimtrid |
|
| 125 |
124
|
adantrl |
|
| 126 |
125
|
ssrdv |
|
| 127 |
|
simprl |
|
| 128 |
126 127
|
sstrd |
|
| 129 |
|
filss |
|
| 130 |
63 82 83 128 129
|
syl13anc |
|
| 131 |
130
|
exp32 |
|
| 132 |
|
ineq2 |
|
| 133 |
132
|
imaeq2d |
|
| 134 |
133
|
sseq1d |
|
| 135 |
134
|
imbi1d |
|
| 136 |
131 135
|
syl5ibrcom |
|
| 137 |
136
|
rexlimdva |
|
| 138 |
137
|
rexlimdvaa |
|
| 139 |
138
|
imp |
|
| 140 |
62 139
|
syldan |
|
| 141 |
60 140
|
sylbid |
|
| 142 |
141
|
impr |
|
| 143 |
|
imaeq2 |
|
| 144 |
143
|
sseq1d |
|
| 145 |
144
|
imbi1d |
|
| 146 |
142 145
|
syl5ibrcom |
|
| 147 |
146
|
rexlimdvva |
|
| 148 |
48 55 147
|
3jaod |
|
| 149 |
47 148
|
sylbid |
|
| 150 |
149
|
rexlimdv |
|
| 151 |
150
|
impcomd |
|
| 152 |
45 151
|
impbid |
|