Metamath Proof Explorer


Theorem fourierdlem12

Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem12.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem12.2 φ M
fourierdlem12.3 φ Q P M
fourierdlem12.4 φ X ran Q
Assertion fourierdlem12 φ i 0 ..^ M ¬ X Q i Q i + 1

Proof

Step Hyp Ref Expression
1 fourierdlem12.1 P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
2 fourierdlem12.2 φ M
3 fourierdlem12.3 φ Q P M
4 fourierdlem12.4 φ X ran Q
5 1 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
6 2 5 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
7 3 6 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
8 7 simpld φ Q 0 M
9 elmapi Q 0 M Q : 0 M
10 ffn Q : 0 M Q Fn 0 M
11 8 9 10 3syl φ Q Fn 0 M
12 fvelrnb Q Fn 0 M X ran Q j 0 M Q j = X
13 11 12 syl φ X ran Q j 0 M Q j = X
14 4 13 mpbid φ j 0 M Q j = X
15 14 adantr φ i 0 ..^ M j 0 M Q j = X
16 8 9 syl φ Q : 0 M
17 16 adantr φ i 0 ..^ M Q : 0 M
18 fzofzp1 i 0 ..^ M i + 1 0 M
19 18 adantl φ i 0 ..^ M i + 1 0 M
20 17 19 ffvelrnd φ i 0 ..^ M Q i + 1
21 20 adantr φ i 0 ..^ M i < j Q i + 1
22 21 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1
23 frn Q : 0 M ran Q
24 16 23 syl φ ran Q
25 24 4 sseldd φ X
26 25 ad2antrr φ i 0 ..^ M i < j X
27 26 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X i < j X
28 17 ffvelrnda φ i 0 ..^ M j 0 M Q j
29 28 3adant3 φ i 0 ..^ M j 0 M Q j = X Q j
30 29 adantr φ i 0 ..^ M j 0 M Q j = X i < j Q j
31 simpr i 0 ..^ M j 0 M i < j i < j
32 elfzoelz i 0 ..^ M i
33 32 ad2antrr i 0 ..^ M j 0 M i < j i
34 elfzelz j 0 M j
35 34 ad2antlr i 0 ..^ M j 0 M i < j j
36 zltp1le i j i < j i + 1 j
37 33 35 36 syl2anc i 0 ..^ M j 0 M i < j i < j i + 1 j
38 31 37 mpbid i 0 ..^ M j 0 M i < j i + 1 j
39 33 peano2zd i 0 ..^ M j 0 M i < j i + 1
40 eluz i + 1 j j i + 1 i + 1 j
41 39 35 40 syl2anc i 0 ..^ M j 0 M i < j j i + 1 i + 1 j
42 38 41 mpbird i 0 ..^ M j 0 M i < j j i + 1
43 42 adantlll φ i 0 ..^ M j 0 M i < j j i + 1
44 17 ad2antrr φ i 0 ..^ M j 0 M w i + 1 j Q : 0 M
45 0red i 0 ..^ M w i + 1 j 0
46 elfzelz w i + 1 j w
47 46 zred w i + 1 j w
48 47 adantl i 0 ..^ M w i + 1 j w
49 32 peano2zd i 0 ..^ M i + 1
50 49 zred i 0 ..^ M i + 1
51 50 adantr i 0 ..^ M w i + 1 j i + 1
52 32 zred i 0 ..^ M i
53 52 adantr i 0 ..^ M w i + 1 j i
54 elfzole1 i 0 ..^ M 0 i
55 54 adantr i 0 ..^ M w i + 1 j 0 i
56 53 ltp1d i 0 ..^ M w i + 1 j i < i + 1
57 45 53 51 55 56 lelttrd i 0 ..^ M w i + 1 j 0 < i + 1
58 elfzle1 w i + 1 j i + 1 w
59 58 adantl i 0 ..^ M w i + 1 j i + 1 w
60 45 51 48 57 59 ltletrd i 0 ..^ M w i + 1 j 0 < w
61 45 48 60 ltled i 0 ..^ M w i + 1 j 0 w
62 61 adantlr i 0 ..^ M j 0 M w i + 1 j 0 w
63 47 adantl j 0 M w i + 1 j w
64 34 zred j 0 M j
65 64 adantr j 0 M w i + 1 j j
66 elfzel2 j 0 M M
67 66 zred j 0 M M
68 67 adantr j 0 M w i + 1 j M
69 elfzle2 w i + 1 j w j
70 69 adantl j 0 M w i + 1 j w j
71 elfzle2 j 0 M j M
72 71 adantr j 0 M w i + 1 j j M
73 63 65 68 70 72 letrd j 0 M w i + 1 j w M
74 73 adantll i 0 ..^ M j 0 M w i + 1 j w M
75 46 adantl i 0 ..^ M j 0 M w i + 1 j w
76 0zd i 0 ..^ M j 0 M w i + 1 j 0
77 66 ad2antlr i 0 ..^ M j 0 M w i + 1 j M
78 elfz w 0 M w 0 M 0 w w M
79 75 76 77 78 syl3anc i 0 ..^ M j 0 M w i + 1 j w 0 M 0 w w M
80 62 74 79 mpbir2and i 0 ..^ M j 0 M w i + 1 j w 0 M
81 80 adantlll φ i 0 ..^ M j 0 M w i + 1 j w 0 M
82 44 81 ffvelrnd φ i 0 ..^ M j 0 M w i + 1 j Q w
83 82 adantlr φ i 0 ..^ M j 0 M i < j w i + 1 j Q w
84 simp-4l φ i 0 ..^ M j 0 M i < j w i + 1 j 1 φ
85 0red i 0 ..^ M j 0 M w i + 1 j 1 0
86 elfzelz w i + 1 j 1 w
87 86 zred w i + 1 j 1 w
88 87 adantl i 0 ..^ M j 0 M w i + 1 j 1 w
89 0red i 0 ..^ M w i + 1 j 1 0
90 50 adantr i 0 ..^ M w i + 1 j 1 i + 1
91 87 adantl i 0 ..^ M w i + 1 j 1 w
92 0red i 0 ..^ M 0
93 52 ltp1d i 0 ..^ M i < i + 1
94 92 52 50 54 93 lelttrd i 0 ..^ M 0 < i + 1
95 94 adantr i 0 ..^ M w i + 1 j 1 0 < i + 1
96 elfzle1 w i + 1 j 1 i + 1 w
97 96 adantl i 0 ..^ M w i + 1 j 1 i + 1 w
98 89 90 91 95 97 ltletrd i 0 ..^ M w i + 1 j 1 0 < w
99 98 adantlr i 0 ..^ M j 0 M w i + 1 j 1 0 < w
100 85 88 99 ltled i 0 ..^ M j 0 M w i + 1 j 1 0 w
101 100 adantlll φ i 0 ..^ M j 0 M w i + 1 j 1 0 w
102 101 adantlr φ i 0 ..^ M j 0 M i < j w i + 1 j 1 0 w
103 87 adantl j 0 M w i + 1 j 1 w
104 peano2rem j j 1
105 64 104 syl j 0 M j 1
106 105 adantr j 0 M w i + 1 j 1 j 1
107 67 adantr j 0 M w i + 1 j 1 M
108 elfzle2 w i + 1 j 1 w j 1
109 108 adantl j 0 M w i + 1 j 1 w j 1
110 zlem1lt j M j M j 1 < M
111 34 66 110 syl2anc j 0 M j M j 1 < M
112 71 111 mpbid j 0 M j 1 < M
113 112 adantr j 0 M w i + 1 j 1 j 1 < M
114 103 106 107 109 113 lelttrd j 0 M w i + 1 j 1 w < M
115 114 adantlr j 0 M i < j w i + 1 j 1 w < M
116 115 adantlll φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w < M
117 86 adantl φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w
118 0zd φ i 0 ..^ M j 0 M i < j w i + 1 j 1 0
119 66 ad3antlr φ i 0 ..^ M j 0 M i < j w i + 1 j 1 M
120 elfzo w 0 M w 0 ..^ M 0 w w < M
121 117 118 119 120 syl3anc φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w 0 ..^ M 0 w w < M
122 102 116 121 mpbir2and φ i 0 ..^ M j 0 M i < j w i + 1 j 1 w 0 ..^ M
123 16 adantr φ w 0 ..^ M Q : 0 M
124 elfzofz w 0 ..^ M w 0 M
125 124 adantl φ w 0 ..^ M w 0 M
126 123 125 ffvelrnd φ w 0 ..^ M Q w
127 fzofzp1 w 0 ..^ M w + 1 0 M
128 127 adantl φ w 0 ..^ M w + 1 0 M
129 123 128 ffvelrnd φ w 0 ..^ M Q w + 1
130 eleq1w i = w i 0 ..^ M w 0 ..^ M
131 130 anbi2d i = w φ i 0 ..^ M φ w 0 ..^ M
132 fveq2 i = w Q i = Q w
133 oveq1 i = w i + 1 = w + 1
134 133 fveq2d i = w Q i + 1 = Q w + 1
135 132 134 breq12d i = w Q i < Q i + 1 Q w < Q w + 1
136 131 135 imbi12d i = w φ i 0 ..^ M Q i < Q i + 1 φ w 0 ..^ M Q w < Q w + 1
137 7 simprrd φ i 0 ..^ M Q i < Q i + 1
138 137 r19.21bi φ i 0 ..^ M Q i < Q i + 1
139 136 138 chvarvv φ w 0 ..^ M Q w < Q w + 1
140 126 129 139 ltled φ w 0 ..^ M Q w Q w + 1
141 84 122 140 syl2anc φ i 0 ..^ M j 0 M i < j w i + 1 j 1 Q w Q w + 1
142 43 83 141 monoord φ i 0 ..^ M j 0 M i < j Q i + 1 Q j
143 142 3adantl3 φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1 Q j
144 16 ffvelrnda φ j 0 M Q j
145 144 3adant3 φ j 0 M Q j = X Q j
146 simp3 φ j 0 M Q j = X Q j = X
147 145 146 eqled φ j 0 M Q j = X Q j X
148 147 3adant1r φ i 0 ..^ M j 0 M Q j = X Q j X
149 148 adantr φ i 0 ..^ M j 0 M Q j = X i < j Q j X
150 22 30 27 143 149 letrd φ i 0 ..^ M j 0 M Q j = X i < j Q i + 1 X
151 22 27 150 lensymd φ i 0 ..^ M j 0 M Q j = X i < j ¬ X < Q i + 1
152 151 intnand φ i 0 ..^ M j 0 M Q j = X i < j ¬ Q i < X X < Q i + 1
153 64 ad2antlr φ i 0 ..^ M j 0 M ¬ i < j j
154 52 ad3antlr φ i 0 ..^ M j 0 M ¬ i < j i
155 simpr φ i 0 ..^ M j 0 M ¬ i < j ¬ i < j
156 153 154 155 nltled φ i 0 ..^ M j 0 M ¬ i < j j i
157 156 3adantl3 φ i 0 ..^ M j 0 M Q j = X ¬ i < j j i
158 eqcom Q j = X X = Q j
159 158 biimpi Q j = X X = Q j
160 159 adantr Q j = X j i X = Q j
161 160 3ad2antl3 φ i 0 ..^ M j 0 M Q j = X j i X = Q j
162 34 ad2antlr i 0 ..^ M j 0 M j i j
163 32 ad2antrr i 0 ..^ M j 0 M j i i
164 simpr i 0 ..^ M j 0 M j i j i
165 eluz2 i j j i j i
166 162 163 164 165 syl3anbrc i 0 ..^ M j 0 M j i i j
167 166 adantlll φ i 0 ..^ M j 0 M j i i j
168 17 ad2antrr φ i 0 ..^ M j 0 M w j i Q : 0 M
169 0zd i 0 ..^ M j 0 M w j i 0
170 66 ad2antlr i 0 ..^ M j 0 M w j i M
171 elfzelz w j i w
172 171 adantl i 0 ..^ M j 0 M w j i w
173 169 170 172 3jca i 0 ..^ M j 0 M w j i 0 M w
174 0red j 0 M w j i 0
175 64 adantr j 0 M w j i j
176 171 zred w j i w
177 176 adantl j 0 M w j i w
178 elfzle1 j 0 M 0 j
179 178 adantr j 0 M w j i 0 j
180 elfzle1 w j i j w
181 180 adantl j 0 M w j i j w
182 174 175 177 179 181 letrd j 0 M w j i 0 w
183 182 adantll i 0 ..^ M j 0 M w j i 0 w
184 176 adantl i 0 ..^ M w j i w
185 elfzoel2 i 0 ..^ M M
186 185 zred i 0 ..^ M M
187 186 adantr i 0 ..^ M w j i M
188 52 adantr i 0 ..^ M w j i i
189 elfzle2 w j i w i
190 189 adantl i 0 ..^ M w j i w i
191 elfzolt2 i 0 ..^ M i < M
192 191 adantr i 0 ..^ M w j i i < M
193 184 188 187 190 192 lelttrd i 0 ..^ M w j i w < M
194 184 187 193 ltled i 0 ..^ M w j i w M
195 194 adantlr i 0 ..^ M j 0 M w j i w M
196 173 183 195 jca32 i 0 ..^ M j 0 M w j i 0 M w 0 w w M
197 196 adantlll φ i 0 ..^ M j 0 M w j i 0 M w 0 w w M
198 elfz2 w 0 M 0 M w 0 w w M
199 197 198 sylibr φ i 0 ..^ M j 0 M w j i w 0 M
200 168 199 ffvelrnd φ i 0 ..^ M j 0 M w j i Q w
201 200 adantlr φ i 0 ..^ M j 0 M j i w j i Q w
202 simplll φ i 0 ..^ M j 0 M w j i 1 φ
203 0red i 0 ..^ M j 0 M w j i 1 0
204 64 ad2antlr i 0 ..^ M j 0 M w j i 1 j
205 elfzelz w j i 1 w
206 205 zred w j i 1 w
207 206 adantl i 0 ..^ M j 0 M w j i 1 w
208 178 ad2antlr i 0 ..^ M j 0 M w j i 1 0 j
209 elfzle1 w j i 1 j w
210 209 adantl i 0 ..^ M j 0 M w j i 1 j w
211 203 204 207 208 210 letrd i 0 ..^ M j 0 M w j i 1 0 w
212 206 adantl i 0 ..^ M w j i 1 w
213 52 adantr i 0 ..^ M w j i 1 i
214 186 adantr i 0 ..^ M w j i 1 M
215 peano2rem i i 1
216 213 215 syl i 0 ..^ M w j i 1 i 1
217 elfzle2 w j i 1 w i 1
218 217 adantl i 0 ..^ M w j i 1 w i 1
219 213 ltm1d i 0 ..^ M w j i 1 i 1 < i
220 212 216 213 218 219 lelttrd i 0 ..^ M w j i 1 w < i
221 191 adantr i 0 ..^ M w j i 1 i < M
222 212 213 214 220 221 lttrd i 0 ..^ M w j i 1 w < M
223 222 adantlr i 0 ..^ M j 0 M w j i 1 w < M
224 205 adantl i 0 ..^ M j 0 M w j i 1 w
225 0zd i 0 ..^ M j 0 M w j i 1 0
226 185 ad2antrr i 0 ..^ M j 0 M w j i 1 M
227 224 225 226 120 syl3anc i 0 ..^ M j 0 M w j i 1 w 0 ..^ M 0 w w < M
228 211 223 227 mpbir2and i 0 ..^ M j 0 M w j i 1 w 0 ..^ M
229 228 adantlll φ i 0 ..^ M j 0 M w j i 1 w 0 ..^ M
230 202 229 140 syl2anc φ i 0 ..^ M j 0 M w j i 1 Q w Q w + 1
231 230 adantlr φ i 0 ..^ M j 0 M j i w j i 1 Q w Q w + 1
232 167 201 231 monoord φ i 0 ..^ M j 0 M j i Q j Q i
233 232 3adantl3 φ i 0 ..^ M j 0 M Q j = X j i Q j Q i
234 161 233 eqbrtrd φ i 0 ..^ M j 0 M Q j = X j i X Q i
235 25 adantr φ i 0 ..^ M X
236 elfzofz i 0 ..^ M i 0 M
237 236 adantl φ i 0 ..^ M i 0 M
238 17 237 ffvelrnd φ i 0 ..^ M Q i
239 235 238 lenltd φ i 0 ..^ M X Q i ¬ Q i < X
240 239 adantr φ i 0 ..^ M j i X Q i ¬ Q i < X
241 240 3ad2antl1 φ i 0 ..^ M j 0 M Q j = X j i X Q i ¬ Q i < X
242 234 241 mpbid φ i 0 ..^ M j 0 M Q j = X j i ¬ Q i < X
243 157 242 syldan φ i 0 ..^ M j 0 M Q j = X ¬ i < j ¬ Q i < X
244 243 intnanrd φ i 0 ..^ M j 0 M Q j = X ¬ i < j ¬ Q i < X X < Q i + 1
245 152 244 pm2.61dan φ i 0 ..^ M j 0 M Q j = X ¬ Q i < X X < Q i + 1
246 245 intnand φ i 0 ..^ M j 0 M Q j = X ¬ Q i * Q i + 1 * X * Q i < X X < Q i + 1
247 elioo3g X Q i Q i + 1 Q i * Q i + 1 * X * Q i < X X < Q i + 1
248 246 247 sylnibr φ i 0 ..^ M j 0 M Q j = X ¬ X Q i Q i + 1
249 248 rexlimdv3a φ i 0 ..^ M j 0 M Q j = X ¬ X Q i Q i + 1
250 15 249 mpd φ i 0 ..^ M ¬ X Q i Q i + 1