Metamath Proof Explorer


Theorem fourierdlem12

Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem12.1 P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem12.2 φM
fourierdlem12.3 φQPM
fourierdlem12.4 φXranQ
Assertion fourierdlem12 φi0..^M¬XQiQi+1

Proof

Step Hyp Ref Expression
1 fourierdlem12.1 P=mp0m|p0=Apm=Bi0..^mpi<pi+1
2 fourierdlem12.2 φM
3 fourierdlem12.3 φQPM
4 fourierdlem12.4 φXranQ
5 1 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
6 2 5 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
7 3 6 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
8 7 simpld φQ0M
9 elmapi Q0MQ:0M
10 ffn Q:0MQFn0M
11 8 9 10 3syl φQFn0M
12 fvelrnb QFn0MXranQj0MQj=X
13 11 12 syl φXranQj0MQj=X
14 4 13 mpbid φj0MQj=X
15 14 adantr φi0..^Mj0MQj=X
16 8 9 syl φQ:0M
17 16 adantr φi0..^MQ:0M
18 fzofzp1 i0..^Mi+10M
19 18 adantl φi0..^Mi+10M
20 17 19 ffvelcdmd φi0..^MQi+1
21 20 adantr φi0..^Mi<jQi+1
22 21 3ad2antl1 φi0..^Mj0MQj=Xi<jQi+1
23 frn Q:0MranQ
24 16 23 syl φranQ
25 24 4 sseldd φX
26 25 ad2antrr φi0..^Mi<jX
27 26 3ad2antl1 φi0..^Mj0MQj=Xi<jX
28 17 ffvelcdmda φi0..^Mj0MQj
29 28 3adant3 φi0..^Mj0MQj=XQj
30 29 adantr φi0..^Mj0MQj=Xi<jQj
31 simpr i0..^Mj0Mi<ji<j
32 elfzoelz i0..^Mi
33 32 ad2antrr i0..^Mj0Mi<ji
34 elfzelz j0Mj
35 34 ad2antlr i0..^Mj0Mi<jj
36 zltp1le iji<ji+1j
37 33 35 36 syl2anc i0..^Mj0Mi<ji<ji+1j
38 31 37 mpbid i0..^Mj0Mi<ji+1j
39 33 peano2zd i0..^Mj0Mi<ji+1
40 eluz i+1jji+1i+1j
41 39 35 40 syl2anc i0..^Mj0Mi<jji+1i+1j
42 38 41 mpbird i0..^Mj0Mi<jji+1
43 42 adantlll φi0..^Mj0Mi<jji+1
44 17 ad2antrr φi0..^Mj0Mwi+1jQ:0M
45 0zd i0..^Mj0Mwi+1j0
46 elfzel2 j0MM
47 46 ad2antlr i0..^Mj0Mwi+1jM
48 elfzelz wi+1jw
49 48 adantl i0..^Mj0Mwi+1jw
50 0red i0..^Mwi+1j0
51 48 zred wi+1jw
52 51 adantl i0..^Mwi+1jw
53 32 peano2zd i0..^Mi+1
54 53 zred i0..^Mi+1
55 54 adantr i0..^Mwi+1ji+1
56 32 zred i0..^Mi
57 56 adantr i0..^Mwi+1ji
58 elfzole1 i0..^M0i
59 58 adantr i0..^Mwi+1j0i
60 57 ltp1d i0..^Mwi+1ji<i+1
61 50 57 55 59 60 lelttrd i0..^Mwi+1j0<i+1
62 elfzle1 wi+1ji+1w
63 62 adantl i0..^Mwi+1ji+1w
64 50 55 52 61 63 ltletrd i0..^Mwi+1j0<w
65 50 52 64 ltled i0..^Mwi+1j0w
66 65 adantlr i0..^Mj0Mwi+1j0w
67 51 adantl j0Mwi+1jw
68 34 zred j0Mj
69 68 adantr j0Mwi+1jj
70 46 zred j0MM
71 70 adantr j0Mwi+1jM
72 elfzle2 wi+1jwj
73 72 adantl j0Mwi+1jwj
74 elfzle2 j0MjM
75 74 adantr j0Mwi+1jjM
76 67 69 71 73 75 letrd j0Mwi+1jwM
77 76 adantll i0..^Mj0Mwi+1jwM
78 45 47 49 66 77 elfzd i0..^Mj0Mwi+1jw0M
79 78 adantlll φi0..^Mj0Mwi+1jw0M
80 44 79 ffvelcdmd φi0..^Mj0Mwi+1jQw
81 80 adantlr φi0..^Mj0Mi<jwi+1jQw
82 simp-4l φi0..^Mj0Mi<jwi+1j1φ
83 0red i0..^Mj0Mwi+1j10
84 elfzelz wi+1j1w
85 84 zred wi+1j1w
86 85 adantl i0..^Mj0Mwi+1j1w
87 0red i0..^Mwi+1j10
88 54 adantr i0..^Mwi+1j1i+1
89 85 adantl i0..^Mwi+1j1w
90 0red i0..^M0
91 56 ltp1d i0..^Mi<i+1
92 90 56 54 58 91 lelttrd i0..^M0<i+1
93 92 adantr i0..^Mwi+1j10<i+1
94 elfzle1 wi+1j1i+1w
95 94 adantl i0..^Mwi+1j1i+1w
96 87 88 89 93 95 ltletrd i0..^Mwi+1j10<w
97 96 adantlr i0..^Mj0Mwi+1j10<w
98 83 86 97 ltled i0..^Mj0Mwi+1j10w
99 98 adantlll φi0..^Mj0Mwi+1j10w
100 99 adantlr φi0..^Mj0Mi<jwi+1j10w
101 85 adantl j0Mwi+1j1w
102 peano2rem jj1
103 68 102 syl j0Mj1
104 103 adantr j0Mwi+1j1j1
105 70 adantr j0Mwi+1j1M
106 elfzle2 wi+1j1wj1
107 106 adantl j0Mwi+1j1wj1
108 zlem1lt jMjMj1<M
109 34 46 108 syl2anc j0MjMj1<M
110 74 109 mpbid j0Mj1<M
111 110 adantr j0Mwi+1j1j1<M
112 101 104 105 107 111 lelttrd j0Mwi+1j1w<M
113 112 adantlr j0Mi<jwi+1j1w<M
114 113 adantlll φi0..^Mj0Mi<jwi+1j1w<M
115 84 adantl φi0..^Mj0Mi<jwi+1j1w
116 0zd φi0..^Mj0Mi<jwi+1j10
117 46 ad3antlr φi0..^Mj0Mi<jwi+1j1M
118 elfzo w0Mw0..^M0ww<M
119 115 116 117 118 syl3anc φi0..^Mj0Mi<jwi+1j1w0..^M0ww<M
120 100 114 119 mpbir2and φi0..^Mj0Mi<jwi+1j1w0..^M
121 16 adantr φw0..^MQ:0M
122 elfzofz w0..^Mw0M
123 122 adantl φw0..^Mw0M
124 121 123 ffvelcdmd φw0..^MQw
125 fzofzp1 w0..^Mw+10M
126 125 adantl φw0..^Mw+10M
127 121 126 ffvelcdmd φw0..^MQw+1
128 eleq1w i=wi0..^Mw0..^M
129 128 anbi2d i=wφi0..^Mφw0..^M
130 fveq2 i=wQi=Qw
131 oveq1 i=wi+1=w+1
132 131 fveq2d i=wQi+1=Qw+1
133 130 132 breq12d i=wQi<Qi+1Qw<Qw+1
134 129 133 imbi12d i=wφi0..^MQi<Qi+1φw0..^MQw<Qw+1
135 7 simprrd φi0..^MQi<Qi+1
136 135 r19.21bi φi0..^MQi<Qi+1
137 134 136 chvarvv φw0..^MQw<Qw+1
138 124 127 137 ltled φw0..^MQwQw+1
139 82 120 138 syl2anc φi0..^Mj0Mi<jwi+1j1QwQw+1
140 43 81 139 monoord φi0..^Mj0Mi<jQi+1Qj
141 140 3adantl3 φi0..^Mj0MQj=Xi<jQi+1Qj
142 16 ffvelcdmda φj0MQj
143 142 3adant3 φj0MQj=XQj
144 simp3 φj0MQj=XQj=X
145 143 144 eqled φj0MQj=XQjX
146 145 3adant1r φi0..^Mj0MQj=XQjX
147 146 adantr φi0..^Mj0MQj=Xi<jQjX
148 22 30 27 141 147 letrd φi0..^Mj0MQj=Xi<jQi+1X
149 22 27 148 lensymd φi0..^Mj0MQj=Xi<j¬X<Qi+1
150 149 intnand φi0..^Mj0MQj=Xi<j¬Qi<XX<Qi+1
151 68 ad2antlr φi0..^Mj0M¬i<jj
152 56 ad3antlr φi0..^Mj0M¬i<ji
153 simpr φi0..^Mj0M¬i<j¬i<j
154 151 152 153 nltled φi0..^Mj0M¬i<jji
155 154 3adantl3 φi0..^Mj0MQj=X¬i<jji
156 eqcom Qj=XX=Qj
157 156 biimpi Qj=XX=Qj
158 157 adantr Qj=XjiX=Qj
159 158 3ad2antl3 φi0..^Mj0MQj=XjiX=Qj
160 34 ad2antlr i0..^Mj0Mjij
161 32 ad2antrr i0..^Mj0Mjii
162 simpr i0..^Mj0Mjiji
163 eluz2 ijjiji
164 160 161 162 163 syl3anbrc i0..^Mj0Mjiij
165 164 adantlll φi0..^Mj0Mjiij
166 17 ad2antrr φi0..^Mj0MwjiQ:0M
167 0zd i0..^Mj0Mwji0
168 46 ad2antlr i0..^Mj0MwjiM
169 elfzelz wjiw
170 169 adantl i0..^Mj0Mwjiw
171 167 168 170 3jca i0..^Mj0Mwji0Mw
172 0red j0Mwji0
173 68 adantr j0Mwjij
174 169 zred wjiw
175 174 adantl j0Mwjiw
176 elfzle1 j0M0j
177 176 adantr j0Mwji0j
178 elfzle1 wjijw
179 178 adantl j0Mwjijw
180 172 173 175 177 179 letrd j0Mwji0w
181 180 adantll i0..^Mj0Mwji0w
182 174 adantl i0..^Mwjiw
183 elfzoel2 i0..^MM
184 183 zred i0..^MM
185 184 adantr i0..^MwjiM
186 56 adantr i0..^Mwjii
187 elfzle2 wjiwi
188 187 adantl i0..^Mwjiwi
189 elfzolt2 i0..^Mi<M
190 189 adantr i0..^Mwjii<M
191 182 186 185 188 190 lelttrd i0..^Mwjiw<M
192 182 185 191 ltled i0..^MwjiwM
193 192 adantlr i0..^Mj0MwjiwM
194 171 181 193 jca32 i0..^Mj0Mwji0Mw0wwM
195 194 adantlll φi0..^Mj0Mwji0Mw0wwM
196 elfz2 w0M0Mw0wwM
197 195 196 sylibr φi0..^Mj0Mwjiw0M
198 166 197 ffvelcdmd φi0..^Mj0MwjiQw
199 198 adantlr φi0..^Mj0MjiwjiQw
200 simplll φi0..^Mj0Mwji1φ
201 0red i0..^Mj0Mwji10
202 68 ad2antlr i0..^Mj0Mwji1j
203 elfzelz wji1w
204 203 zred wji1w
205 204 adantl i0..^Mj0Mwji1w
206 176 ad2antlr i0..^Mj0Mwji10j
207 elfzle1 wji1jw
208 207 adantl i0..^Mj0Mwji1jw
209 201 202 205 206 208 letrd i0..^Mj0Mwji10w
210 204 adantl i0..^Mwji1w
211 56 adantr i0..^Mwji1i
212 184 adantr i0..^Mwji1M
213 peano2rem ii1
214 211 213 syl i0..^Mwji1i1
215 elfzle2 wji1wi1
216 215 adantl i0..^Mwji1wi1
217 211 ltm1d i0..^Mwji1i1<i
218 210 214 211 216 217 lelttrd i0..^Mwji1w<i
219 189 adantr i0..^Mwji1i<M
220 210 211 212 218 219 lttrd i0..^Mwji1w<M
221 220 adantlr i0..^Mj0Mwji1w<M
222 203 adantl i0..^Mj0Mwji1w
223 0zd i0..^Mj0Mwji10
224 183 ad2antrr i0..^Mj0Mwji1M
225 222 223 224 118 syl3anc i0..^Mj0Mwji1w0..^M0ww<M
226 209 221 225 mpbir2and i0..^Mj0Mwji1w0..^M
227 226 adantlll φi0..^Mj0Mwji1w0..^M
228 200 227 138 syl2anc φi0..^Mj0Mwji1QwQw+1
229 228 adantlr φi0..^Mj0Mjiwji1QwQw+1
230 165 199 229 monoord φi0..^Mj0MjiQjQi
231 230 3adantl3 φi0..^Mj0MQj=XjiQjQi
232 159 231 eqbrtrd φi0..^Mj0MQj=XjiXQi
233 25 adantr φi0..^MX
234 elfzofz i0..^Mi0M
235 234 adantl φi0..^Mi0M
236 17 235 ffvelcdmd φi0..^MQi
237 233 236 lenltd φi0..^MXQi¬Qi<X
238 237 adantr φi0..^MjiXQi¬Qi<X
239 238 3ad2antl1 φi0..^Mj0MQj=XjiXQi¬Qi<X
240 232 239 mpbid φi0..^Mj0MQj=Xji¬Qi<X
241 155 240 syldan φi0..^Mj0MQj=X¬i<j¬Qi<X
242 241 intnanrd φi0..^Mj0MQj=X¬i<j¬Qi<XX<Qi+1
243 150 242 pm2.61dan φi0..^Mj0MQj=X¬Qi<XX<Qi+1
244 243 intnand φi0..^Mj0MQj=X¬Qi*Qi+1*X*Qi<XX<Qi+1
245 elioo3g XQiQi+1Qi*Qi+1*X*Qi<XX<Qi+1
246 244 245 sylnibr φi0..^Mj0MQj=X¬XQiQi+1
247 246 rexlimdv3a φi0..^Mj0MQj=X¬XQiQi+1
248 15 247 mpd φi0..^M¬XQiQi+1