Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem30.ibl |
|
2 |
|
fourierlemreimleblemlte22.f |
|
3 |
|
fourierdlem30.g |
|
4 |
|
fourierdlem30.a |
|
5 |
|
fourierdlem30.x |
|
6 |
|
fourierdlem30.c |
|
7 |
|
fourierdlem30.y |
|
8 |
|
fourierdlem30.z |
|
9 |
|
fourierdlem30.e |
|
10 |
|
fourierdlem30.r |
|
11 |
|
fourierdlem30.ler |
|
12 |
|
fourierdlem30.b |
|
13 |
|
fourierdlem30.12 |
|
14 |
|
fourierdlem30.d |
|
15 |
|
fourierdlem30.14 |
|
16 |
10
|
recnd |
|
17 |
|
0red |
|
18 |
|
1red |
|
19 |
|
0lt1 |
|
20 |
19
|
a1i |
|
21 |
4
|
abscld |
|
22 |
5 21
|
eqeltrid |
|
23 |
6
|
abscld |
|
24 |
7 23
|
eqeltrid |
|
25 |
22 24
|
readdcld |
|
26 |
3
|
negcld |
|
27 |
2 26
|
mulcld |
|
28 |
27 1
|
itgcl |
|
29 |
28
|
abscld |
|
30 |
8 29
|
eqeltrid |
|
31 |
25 30
|
readdcld |
|
32 |
9
|
rpred |
|
33 |
9
|
rpne0d |
|
34 |
31 32 33
|
redivcld |
|
35 |
34 18
|
readdcld |
|
36 |
4
|
absge0d |
|
37 |
36 5
|
breqtrrdi |
|
38 |
6
|
absge0d |
|
39 |
38 7
|
breqtrrdi |
|
40 |
22 24 37 39
|
addge0d |
|
41 |
28
|
absge0d |
|
42 |
41 8
|
breqtrrdi |
|
43 |
25 30 40 42
|
addge0d |
|
44 |
31 9 43
|
divge0d |
|
45 |
18 34
|
addge02d |
|
46 |
44 45
|
mpbid |
|
47 |
18 35 10 46 11
|
letrd |
|
48 |
17 18 10 20 47
|
ltletrd |
|
49 |
48
|
gt0ne0d |
|
50 |
12 16 49
|
divnegd |
|
51 |
50
|
oveq2d |
|
52 |
12
|
negcld |
|
53 |
4 52 16 49
|
divassd |
|
54 |
51 53
|
eqtr4d |
|
55 |
14 16 49
|
divnegd |
|
56 |
55
|
oveq2d |
|
57 |
14
|
negcld |
|
58 |
6 57 16 49
|
divassd |
|
59 |
56 58
|
eqtr4d |
|
60 |
54 59
|
oveq12d |
|
61 |
4 52
|
mulcld |
|
62 |
6 57
|
mulcld |
|
63 |
61 62 16 49
|
divsubdird |
|
64 |
60 63
|
eqtr4d |
|
65 |
16 49
|
reccld |
|
66 |
65 27 1
|
itgmulc2 |
|
67 |
28 16 49
|
divrec2d |
|
68 |
16
|
adantr |
|
69 |
49
|
adantr |
|
70 |
3 68 69
|
divnegd |
|
71 |
70
|
oveq2d |
|
72 |
2 26 68 69
|
divassd |
|
73 |
27 68 69
|
divrec2d |
|
74 |
71 72 73
|
3eqtr2d |
|
75 |
74
|
itgeq2dv |
|
76 |
66 67 75
|
3eqtr4rd |
|
77 |
64 76
|
oveq12d |
|
78 |
61 62
|
subcld |
|
79 |
78 28 16 49
|
divsubdird |
|
80 |
77 79
|
eqtr4d |
|
81 |
80
|
fveq2d |
|
82 |
78 28
|
subcld |
|
83 |
82 16 49
|
absdivd |
|
84 |
17 10 48
|
ltled |
|
85 |
10 84
|
absidd |
|
86 |
85
|
oveq2d |
|
87 |
81 83 86
|
3eqtrd |
|
88 |
82
|
abscld |
|
89 |
88 10 49
|
redivcld |
|
90 |
21 23
|
readdcld |
|
91 |
90 29
|
readdcld |
|
92 |
91 10 49
|
redivcld |
|
93 |
10 48
|
elrpd |
|
94 |
78
|
abscld |
|
95 |
94 29
|
readdcld |
|
96 |
78 28
|
abs2dif2d |
|
97 |
61
|
abscld |
|
98 |
62
|
abscld |
|
99 |
97 98
|
readdcld |
|
100 |
61 62
|
abs2dif2d |
|
101 |
4 52
|
absmuld |
|
102 |
52
|
abscld |
|
103 |
12
|
absnegd |
|
104 |
103 13
|
eqbrtrd |
|
105 |
102 18 21 36 104
|
lemul2ad |
|
106 |
21
|
recnd |
|
107 |
106
|
mulid1d |
|
108 |
105 107
|
breqtrd |
|
109 |
101 108
|
eqbrtrd |
|
110 |
6 57
|
absmuld |
|
111 |
57
|
abscld |
|
112 |
14
|
absnegd |
|
113 |
112 15
|
eqbrtrd |
|
114 |
111 18 23 38 113
|
lemul2ad |
|
115 |
23
|
recnd |
|
116 |
115
|
mulid1d |
|
117 |
114 116
|
breqtrd |
|
118 |
110 117
|
eqbrtrd |
|
119 |
97 98 21 23 109 118
|
le2addd |
|
120 |
94 99 90 100 119
|
letrd |
|
121 |
94 90 29 120
|
leadd1dd |
|
122 |
88 95 91 96 121
|
letrd |
|
123 |
88 91 93 122
|
lediv1dd |
|
124 |
34
|
ltp1d |
|
125 |
17 34 35 44 124
|
lelttrd |
|
126 |
125
|
gt0ne0d |
|
127 |
91 35 126
|
redivcld |
|
128 |
34 44
|
ge0p1rpd |
|
129 |
5
|
eqcomi |
|
130 |
7
|
eqcomi |
|
131 |
129 130
|
oveq12i |
|
132 |
8
|
eqcomi |
|
133 |
131 132
|
oveq12i |
|
134 |
43 133
|
breqtrrdi |
|
135 |
128 93 91 134 11
|
lediv2ad |
|
136 |
133
|
oveq1i |
|
137 |
|
oveq1 |
|
138 |
137
|
adantl |
|
139 |
34
|
recnd |
|
140 |
18
|
recnd |
|
141 |
139 140
|
addcld |
|
142 |
141
|
adantr |
|
143 |
|
oveq1 |
|
144 |
143
|
adantl |
|
145 |
9
|
rpcnd |
|
146 |
145
|
adantr |
|
147 |
33
|
adantr |
|
148 |
146 147
|
div0d |
|
149 |
144 148
|
eqtrd |
|
150 |
149
|
oveq1d |
|
151 |
|
0p1e1 |
|
152 |
150 151
|
eqtrdi |
|
153 |
|
ax-1ne0 |
|
154 |
153
|
a1i |
|
155 |
152 154
|
eqnetrd |
|
156 |
142 155
|
div0d |
|
157 |
138 156
|
eqtrd |
|
158 |
9
|
rpgt0d |
|
159 |
158
|
adantr |
|
160 |
157 159
|
eqbrtrd |
|
161 |
31
|
adantr |
|
162 |
9
|
adantr |
|
163 |
43
|
adantr |
|
164 |
|
neqne |
|
165 |
164
|
adantl |
|
166 |
161 163 165
|
ne0gt0d |
|
167 |
161 166
|
elrpd |
|
168 |
167 162
|
rpdivcld |
|
169 |
|
1rp |
|
170 |
169
|
a1i |
|
171 |
168 170
|
rpaddcld |
|
172 |
124
|
adantr |
|
173 |
161 162 171 172
|
ltdiv23d |
|
174 |
160 173
|
pm2.61dan |
|
175 |
136 174
|
eqbrtrid |
|
176 |
92 127 32 135 175
|
lelttrd |
|
177 |
89 92 32 123 176
|
lelttrd |
|
178 |
87 177
|
eqbrtrd |
|