Metamath Proof Explorer


Theorem fourierdlem58

Description: The derivative of K is continuous on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem58.k K=sAs2sins2
fourierdlem58.ass φAππ
fourierdlem58.0nA φ¬0A
fourierdlem58.4 φAtopGenran.
Assertion fourierdlem58 φK:Acn

Proof

Step Hyp Ref Expression
1 fourierdlem58.k K=sAs2sins2
2 fourierdlem58.ass φAππ
3 fourierdlem58.0nA φ¬0A
4 fourierdlem58.4 φAtopGenran.
5 pire π
6 5 a1i φsAπ
7 6 renegcld φsAπ
8 7 6 iccssred φsAππ
9 2 sselda φsAsππ
10 8 9 sseldd φsAs
11 2re 2
12 11 a1i φsA2
13 10 rehalfcld φsAs2
14 13 resincld φsAsins2
15 12 14 remulcld φsA2sins2
16 2cnd φsA2
17 10 recnd φsAs
18 17 halfcld φsAs2
19 18 sincld φsAsins2
20 2ne0 20
21 20 a1i φsA20
22 eqcom s=00=s
23 22 biimpi s=00=s
24 23 adantl sAs=00=s
25 simpl sAs=0sA
26 24 25 eqeltrd sAs=00A
27 26 adantll φsAs=00A
28 3 ad2antrr φsAs=0¬0A
29 27 28 pm2.65da φsA¬s=0
30 29 neqned φsAs0
31 fourierdlem44 sππs0sins20
32 9 30 31 syl2anc φsAsins20
33 16 19 21 32 mulne0d φsA2sins20
34 10 15 33 redivcld φsAs2sins2
35 34 1 fmptd φK:A
36 5 a1i φπ
37 36 renegcld φπ
38 37 36 iccssred φππ
39 2 38 sstrd φA
40 dvfre K:AAK:domK
41 35 39 40 syl2anc φK:domK
42 eqidd φsAs=sAs
43 eqidd φsA2sins2=sA2sins2
44 4 10 15 42 43 offval2 φsAs÷fsA2sins2=sAs2sins2
45 1 44 eqtr4id φK=sAs÷fsA2sins2
46 45 oveq2d φDK=DsAs÷fsA2sins2
47 reelprrecn
48 47 a1i φ
49 eqid sAs=sAs
50 17 49 fmptd φsAs:A
51 16 19 mulcld φsA2sins2
52 33 neneqd φsA¬2sins2=0
53 elsng 2sins22sins202sins2=0
54 15 53 syl φsA2sins202sins2=0
55 52 54 mtbird φsA¬2sins20
56 51 55 eldifd φsA2sins20
57 eqid sA2sins2=sA2sins2
58 56 57 fmptd φsA2sins2:A0
59 eqid TopOpenfld=TopOpenfld
60 59 tgioo2 topGenran.=TopOpenfld𝑡
61 4 60 eleqtrdi φATopOpenfld𝑡
62 48 61 dvmptidg φdsAsds=sA1
63 ax-resscn
64 63 a1i φ
65 39 64 sstrd φA
66 1cnd φ1
67 ssid
68 67 a1i φ
69 65 66 68 constcncfg φsA1:Acn
70 62 69 eqeltrd φdsAsds:Acn
71 39 resmptd φs2sins2A=sA2sins2
72 71 eqcomd φsA2sins2=s2sins2A
73 72 oveq2d φdsA2sins2ds=Ds2sins2A
74 eqid s2sins2=s2sins2
75 2cnd s2
76 recn ss
77 76 halfcld ss2
78 77 sincld ssins2
79 75 78 mulcld s2sins2
80 74 79 fmpti s2sins2:
81 80 a1i φs2sins2:
82 ssid
83 82 a1i φ
84 59 60 dvres s2sins2:ADs2sins2A=ds2sins2dsinttopGenran.A
85 64 81 83 39 84 syl22anc φDs2sins2A=ds2sins2dsinttopGenran.A
86 retop topGenran.Top
87 86 a1i φtopGenran.Top
88 uniretop =topGenran.
89 88 isopn3 topGenran.TopAAtopGenran.inttopGenran.A=A
90 87 39 89 syl2anc φAtopGenran.inttopGenran.A=A
91 4 90 mpbid φinttopGenran.A=A
92 91 reseq2d φds2sins2dsinttopGenran.A=ds2sins2dsA
93 resmpt s2sin12s=s2sin12s
94 63 93 ax-mp s2sin12s=s2sin12s
95 id ss
96 2cnd s2
97 20 a1i s20
98 95 96 97 divrec2d ss2=12s
99 98 eqcomd s12s=s2
100 76 99 syl s12s=s2
101 100 fveq2d ssin12s=sins2
102 101 oveq2d s2sin12s=2sins2
103 102 mpteq2ia s2sin12s=s2sins2
104 94 103 eqtr2i s2sins2=s2sin12s
105 104 oveq2i ds2sins2ds=Ds2sin12s
106 eqid s2sin12s=s2sin12s
107 halfcn 12
108 107 a1i s12
109 108 95 mulcld s12s
110 109 sincld ssin12s
111 96 110 mulcld s2sin12s
112 106 111 fmpti s2sin12s:
113 2cn 2
114 dvasinbx 212ds2sin12sds=s212cos12s
115 113 107 114 mp2an ds2sin12sds=s212cos12s
116 113 20 recidi 212=1
117 116 a1i s212=1
118 99 fveq2d scos12s=coss2
119 117 118 oveq12d s212cos12s=1coss2
120 halfcl ss2
121 120 coscld scoss2
122 121 mullidd s1coss2=coss2
123 119 122 eqtrd s212cos12s=coss2
124 123 mpteq2ia s212cos12s=scoss2
125 115 124 eqtri ds2sin12sds=scoss2
126 125 dmeqi domds2sin12sds=domscoss2
127 dmmptg scoss2domscoss2=
128 127 121 mprg domscoss2=
129 126 128 eqtri domds2sin12sds=
130 63 129 sseqtrri domds2sin12sds
131 dvres3 s2sin12s:domds2sin12sdsDs2sin12s=ds2sin12sds
132 47 112 67 130 131 mp4an Ds2sin12s=ds2sin12sds
133 125 reseq1i ds2sin12sds=scoss2
134 105 132 133 3eqtri ds2sins2ds=scoss2
135 134 reseq1i ds2sins2dsA=scoss2A
136 135 a1i φds2sins2dsA=scoss2A
137 39 resabs1d φscoss2A=scoss2A
138 65 resmptd φscoss2A=sAcoss2
139 137 138 eqtrd φscoss2A=sAcoss2
140 92 136 139 3eqtrd φds2sins2dsinttopGenran.A=sAcoss2
141 73 85 140 3eqtrd φdsA2sins2ds=sAcoss2
142 coscn cos:cn
143 142 a1i φcos:cn
144 65 68 idcncfg φsAs:Acn
145 2cnd φ2
146 20 a1i φ20
147 eldifsn 20220
148 145 146 147 sylanbrc φ20
149 difssd φ0
150 65 148 149 constcncfg φsA2:Acn0
151 144 150 divcncf φsAs2:Acn
152 143 151 cncfmpt1f φsAcoss2:Acn
153 141 152 eqeltrd φdsA2sins2ds:Acn
154 48 50 58 70 153 dvdivcncf φsAs÷fsA2sins2:Acn
155 46 154 eqeltrd φK:Acn
156 cncff K:AcnK:A
157 fdm K:AdomK=A
158 155 156 157 3syl φdomK=A
159 158 feq2d φK:domKK:A
160 41 159 mpbid φK:A
161 cncfcdm K:AcnK:AcnK:A
162 64 155 161 syl2anc φK:AcnK:A
163 160 162 mpbird φK:Acn