Metamath Proof Explorer


Theorem fsum2dsub

Description: Lemma for breprexp - Re-index a double sum, using difference of the initial indices. (Contributed by Thierry Arnoux, 7-Dec-2021)

Ref Expression
Hypotheses fzsum2sub.m φM0
fzsum2sub.n φN0
fzsum2sub.1 i=kjA=B
fzsum2sub.2 φijj1NA
fzsum2sub.3 φj1NkM+j+1M+NB=0
fzsum2sub.4 φj1Nk0..^jB=0
Assertion fsum2dsub φi=0Mj=1NA=k=0M+Nj=1NB

Proof

Step Hyp Ref Expression
1 fzsum2sub.m φM0
2 fzsum2sub.n φN0
3 fzsum2sub.1 i=kjA=B
4 fzsum2sub.2 φijj1NA
5 fzsum2sub.3 φj1NkM+j+1M+NB=0
6 fzsum2sub.4 φj1Nk0..^jB=0
7 simpr φj1Nj1N
8 7 elfzelzd φj1Nj
9 0zd φj1N0
10 1 nn0zd φM
11 10 adantr φj1NM
12 simpll φj1Ni0Mφ
13 fz1ssnn 1N
14 nnssnn0 0
15 13 14 sstri 1N0
16 15 7 sselid φj1Nj0
17 nn0uz 0=0
18 16 17 eleqtrdi φj1Nj0
19 neg0 0=0
20 uzneg j00j
21 19 20 eqeltrrid j00j
22 fzss1 0j0MjM
23 18 21 22 3syl φj1N0MjM
24 fzssuz jMj
25 23 24 sstrdi φj1N0Mj
26 25 sselda φj1Ni0Mij
27 7 adantr φj1Ni0Mj1N
28 12 26 27 4 syl3anc φj1Ni0MA
29 8 9 11 28 3 fsumshft φj1Ni=0MA=k=0+jM+jB
30 1 adantr φj1NM0
31 13 7 sselid φj1Nj
32 31 nnnn0d φj1Nj0
33 30 32 nn0addcld φj1NM+j0
34 33 nn0red φj1NM+j
35 34 ltp1d φj1NM+j<M+j+1
36 fzdisj M+j<M+j+1jM+jM+j+1M+N=
37 35 36 syl φj1NjM+jM+j+1M+N=
38 2 nn0zd φN
39 10 38 zaddcld φM+N
40 39 adantr φj1NM+N
41 33 nn0zd φj1NM+j
42 31 nnred φj1Nj
43 nn0addge2 jM0jM+j
44 42 30 43 syl2anc φj1NjM+j
45 2 nn0red φN
46 45 adantr φj1NN
47 30 nn0red φj1NM
48 elfzle2 j1NjN
49 48 adantl φj1NjN
50 42 46 47 49 leadd2dd φj1NM+jM+N
51 8 40 41 44 50 elfzd φj1NM+jjM+N
52 fzsplit M+jjM+NjM+N=jM+jM+j+1M+N
53 51 52 syl φj1NjM+N=jM+jM+j+1M+N
54 fzfid φj1NjM+NFin
55 simpll φj1NkjM+Nφ
56 7 adantr φj1NkjM+Nj1N
57 15 56 sselid φj1NkjM+Nj0
58 fz2ssnn0 j0jM+N0
59 57 58 syl φj1NkjM+NjM+N0
60 simpr φj1NkjM+NkjM+N
61 59 60 sseldd φj1NkjM+Nk0
62 3 eleq1d i=kjAB
63 simpll φijj1Nφ
64 simplr φijj1Nij
65 simpr φijj1Nj1N
66 63 64 65 4 syl3anc φijj1NA
67 66 an32s φj1NijA
68 67 ralrimiva φj1NijA
69 68 adantr φj1Nk0ijA
70 nnsscn
71 13 70 sstri 1N
72 simplr φj1Nk0j1N
73 71 72 sselid φj1Nk0j
74 simpr φj1Nk0k0
75 74 nn0cnd φj1Nk0k
76 73 75 negsubdi2d φj1Nk0jk=kj
77 72 elfzelzd φj1Nk0j
78 eluzmn jk0jjk
79 77 74 78 syl2anc φj1Nk0jjk
80 uzneg jjkjkj
81 79 80 syl φj1Nk0jkj
82 76 81 eqeltrrd φj1Nk0kjj
83 62 69 82 rspcdva φj1Nk0B
84 55 56 61 83 syl21anc φj1NkjM+NB
85 37 53 54 84 fsumsplit φj1Nk=jM+NB=k=jM+jB+k=M+j+1M+NB
86 8 zcnd φj1Nj
87 86 addlidd φj1N0+j=j
88 87 oveq1d φj1N0+jM+j=jM+j
89 88 eqcomd φj1NjM+j=0+jM+j
90 89 sumeq1d φj1Nk=jM+jB=k=0+jM+jB
91 5 sumeq2dv φj1Nk=M+j+1M+NB=k=M+j+1M+N0
92 fzfi M+j+1M+NFin
93 sumz M+j+1M+N0M+j+1M+NFink=M+j+1M+N0=0
94 93 olcs M+j+1M+NFink=M+j+1M+N0=0
95 92 94 ax-mp k=M+j+1M+N0=0
96 91 95 eqtrdi φj1Nk=M+j+1M+NB=0
97 90 96 oveq12d φj1Nk=jM+jB+k=M+j+1M+NB=k=0+jM+jB+0
98 fzfid φj1N0+jM+jFin
99 simpll φj1Nk0+jM+jφ
100 7 adantr φj1Nk0+jM+jj1N
101 elfzuz3 j1NNj
102 101 adantl φj1NNj
103 eluzadd NjMN+Mj+M
104 102 11 103 syl2anc φj1NN+Mj+M
105 2 nn0cnd φN
106 105 adantr φj1NN
107 zsscn
108 107 11 sselid φj1NM
109 106 108 addcomd φj1NN+M=M+N
110 86 108 addcomd φj1Nj+M=M+j
111 110 fveq2d φj1Nj+M=M+j
112 104 109 111 3eltr3d φj1NM+NM+j
113 112 adantr φj1Nk0+jM+jM+NM+j
114 fzss2 M+NM+jjM+jjM+N
115 113 114 syl φj1Nk0+jM+jjM+jjM+N
116 simpr φj1Nk0+jM+jk0+jM+j
117 88 adantr φj1Nk0+jM+j0+jM+j=jM+j
118 116 117 eleqtrd φj1Nk0+jM+jkjM+j
119 115 118 sseldd φj1Nk0+jM+jkjM+N
120 99 100 119 61 syl21anc φj1Nk0+jM+jk0
121 99 100 120 83 syl21anc φj1Nk0+jM+jB
122 98 121 fsumcl φj1Nk=0+jM+jB
123 122 addridd φj1Nk=0+jM+jB+0=k=0+jM+jB
124 85 97 123 3eqtrrd φj1Nk=0+jM+jB=k=jM+NB
125 fzval3 M+NjM+N=j..^M+N+1
126 40 125 syl φj1NjM+N=j..^M+N+1
127 126 ineq2d φj1N0..^jjM+N=0..^jj..^M+N+1
128 fzodisj 0..^jj..^M+N+1=
129 127 128 eqtrdi φj1N0..^jjM+N=
130 40 peano2zd φj1NM+N+1
131 32 nn0ge0d φj1N0j
132 130 zred φj1NM+N+1
133 40 zred φj1NM+N
134 nn0addge2 NM0NM+N
135 45 1 134 syl2anc φNM+N
136 135 adantr φj1NNM+N
137 133 lep1d φj1NM+NM+N+1
138 46 133 132 136 137 letrd φj1NNM+N+1
139 42 46 132 49 138 letrd φj1NjM+N+1
140 9 130 8 131 139 elfzd φj1Nj0M+N+1
141 fzosplit j0M+N+10..^M+N+1=0..^jj..^M+N+1
142 140 141 syl φj1N0..^M+N+1=0..^jj..^M+N+1
143 fzval3 M+N0M+N=0..^M+N+1
144 40 143 syl φj1N0M+N=0..^M+N+1
145 126 uneq2d φj1N0..^jjM+N=0..^jj..^M+N+1
146 142 144 145 3eqtr4d φj1N0M+N=0..^jjM+N
147 fzfid φ0M+NFin
148 147 adantr φj1N0M+NFin
149 simpl φk0M+Nj1Nφ
150 7 adantrl φk0M+Nj1Nj1N
151 fz0ssnn0 0M+N0
152 simprl φk0M+Nj1Nk0M+N
153 151 152 sselid φk0M+Nj1Nk0
154 149 150 153 83 syl21anc φk0M+Nj1NB
155 154 anass1rs φj1Nk0M+NB
156 129 146 148 155 fsumsplit φj1Nk=0M+NB=k0..^jB+k=jM+NB
157 6 sumeq2dv φj1Nk0..^jB=k0..^j0
158 fzofi 0..^jFin
159 sumz 0..^j00..^jFink0..^j0=0
160 159 olcs 0..^jFink0..^j0=0
161 158 160 ax-mp k0..^j0=0
162 157 161 eqtrdi φj1Nk0..^jB=0
163 162 oveq1d φj1Nk0..^jB+k=jM+NB=0+k=jM+NB
164 54 84 fsumcl φj1Nk=jM+NB
165 164 addlidd φj1N0+k=jM+NB=k=jM+NB
166 156 163 165 3eqtrrd φj1Nk=jM+NB=k=0M+NB
167 124 166 eqtrd φj1Nk=0+jM+jB=k=0M+NB
168 29 167 eqtrd φj1Ni=0MA=k=0M+NB
169 168 sumeq2dv φj=1Ni=0MA=j=1Nk=0M+NB
170 fzfid φ0MFin
171 fzfid φ1NFin
172 28 anasss φj1Ni0MA
173 172 ancom2s φi0Mj1NA
174 170 171 173 fsumcom φi=0Mj=1NA=j=1Ni=0MA
175 147 171 154 fsumcom φk=0M+Nj=1NB=j=1Nk=0M+NB
176 169 174 175 3eqtr4d φi=0Mj=1NA=k=0M+Nj=1NB