Metamath Proof Explorer


Theorem fta1

Description: The easy direction of the Fundamental Theorem of Algebra: A nonzero polynomial has at most deg ( F ) roots. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypothesis fta1.1 R=F-10
Assertion fta1 FPolySF0𝑝RFinRdegF

Proof

Step Hyp Ref Expression
1 fta1.1 R=F-10
2 eqid degF=degF
3 dgrcl FPolySdegF0
4 3 adantr FPolySF0𝑝degF0
5 eqeq2 x=0degf=xdegf=0
6 5 imbi1d x=0degf=xf-10Finf-10degfdegf=0f-10Finf-10degf
7 6 ralbidv x=0fPoly0𝑝degf=xf-10Finf-10degffPoly0𝑝degf=0f-10Finf-10degf
8 eqeq2 x=ddegf=xdegf=d
9 8 imbi1d x=ddegf=xf-10Finf-10degfdegf=df-10Finf-10degf
10 9 ralbidv x=dfPoly0𝑝degf=xf-10Finf-10degffPoly0𝑝degf=df-10Finf-10degf
11 eqeq2 x=d+1degf=xdegf=d+1
12 11 imbi1d x=d+1degf=xf-10Finf-10degfdegf=d+1f-10Finf-10degf
13 12 ralbidv x=d+1fPoly0𝑝degf=xf-10Finf-10degffPoly0𝑝degf=d+1f-10Finf-10degf
14 eqeq2 x=degFdegf=xdegf=degF
15 14 imbi1d x=degFdegf=xf-10Finf-10degfdegf=degFf-10Finf-10degf
16 15 ralbidv x=degFfPoly0𝑝degf=xf-10Finf-10degffPoly0𝑝degf=degFf-10Finf-10degf
17 eldifsni fPoly0𝑝f0𝑝
18 17 adantr fPoly0𝑝degf=0f0𝑝
19 simplr fPoly0𝑝degf=0xf-10degf=0
20 eldifi fPoly0𝑝fPoly
21 20 ad2antrr fPoly0𝑝degf=0xf-10fPoly
22 0dgrb fPolydegf=0f=×f0
23 21 22 syl fPoly0𝑝degf=0xf-10degf=0f=×f0
24 19 23 mpbid fPoly0𝑝degf=0xf-10f=×f0
25 24 fveq1d fPoly0𝑝degf=0xf-10fx=×f0x
26 20 adantr fPoly0𝑝degf=0fPoly
27 plyf fPolyf:
28 ffn f:fFn
29 fniniseg fFnxf-10xfx=0
30 26 27 28 29 4syl fPoly0𝑝degf=0xf-10xfx=0
31 30 biimpa fPoly0𝑝degf=0xf-10xfx=0
32 31 simprd fPoly0𝑝degf=0xf-10fx=0
33 31 simpld fPoly0𝑝degf=0xf-10x
34 fvex f0V
35 34 fvconst2 x×f0x=f0
36 33 35 syl fPoly0𝑝degf=0xf-10×f0x=f0
37 25 32 36 3eqtr3rd fPoly0𝑝degf=0xf-10f0=0
38 37 sneqd fPoly0𝑝degf=0xf-10f0=0
39 38 xpeq2d fPoly0𝑝degf=0xf-10×f0=×0
40 24 39 eqtrd fPoly0𝑝degf=0xf-10f=×0
41 df-0p 0𝑝=×0
42 40 41 eqtr4di fPoly0𝑝degf=0xf-10f=0𝑝
43 42 ex fPoly0𝑝degf=0xf-10f=0𝑝
44 43 necon3ad fPoly0𝑝degf=0f0𝑝¬xf-10
45 18 44 mpd fPoly0𝑝degf=0¬xf-10
46 45 eq0rdv fPoly0𝑝degf=0f-10=
47 46 ex fPoly0𝑝degf=0f-10=
48 dgrcl fPolydegf0
49 nn0ge0 degf00degf
50 20 48 49 3syl fPoly0𝑝0degf
51 id f-10=f-10=
52 0fin Fin
53 51 52 eqeltrdi f-10=f-10Fin
54 53 biantrurd f-10=f-10degff-10Finf-10degf
55 fveq2 f-10=f-10=
56 hash0 =0
57 55 56 eqtrdi f-10=f-10=0
58 57 breq1d f-10=f-10degf0degf
59 54 58 bitr3d f-10=f-10Finf-10degf0degf
60 50 59 syl5ibrcom fPoly0𝑝f-10=f-10Finf-10degf
61 47 60 syld fPoly0𝑝degf=0f-10Finf-10degf
62 61 rgen fPoly0𝑝degf=0f-10Finf-10degf
63 fveqeq2 f=gdegf=ddegg=d
64 cnveq f=gf-1=g-1
65 64 imaeq1d f=gf-10=g-10
66 65 eleq1d f=gf-10Fing-10Fin
67 65 fveq2d f=gf-10=g-10
68 fveq2 f=gdegf=degg
69 67 68 breq12d f=gf-10degfg-10degg
70 66 69 anbi12d f=gf-10Finf-10degfg-10Fing-10degg
71 63 70 imbi12d f=gdegf=df-10Finf-10degfdegg=dg-10Fing-10degg
72 71 cbvralvw fPoly0𝑝degf=df-10Finf-10degfgPoly0𝑝degg=dg-10Fing-10degg
73 50 ad2antlr d0fPoly0𝑝degf=d+10degf
74 73 59 syl5ibrcom d0fPoly0𝑝degf=d+1f-10=f-10Finf-10degf
75 74 a1dd d0fPoly0𝑝degf=d+1f-10=gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
76 n0 f-10xxf-10
77 eqid f-10=f-10
78 simplll d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggd0
79 simpllr d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggfPoly0𝑝
80 simplr d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggdegf=d+1
81 simprl d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggxf-10
82 simprr d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10degggPoly0𝑝degg=dg-10Fing-10degg
83 77 78 79 80 81 82 fta1lem d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
84 83 exp32 d0fPoly0𝑝degf=d+1xf-10gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
85 84 exlimdv d0fPoly0𝑝degf=d+1xxf-10gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
86 76 85 biimtrid d0fPoly0𝑝degf=d+1f-10gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
87 75 86 pm2.61dne d0fPoly0𝑝degf=d+1gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
88 87 ex d0fPoly0𝑝degf=d+1gPoly0𝑝degg=dg-10Fing-10deggf-10Finf-10degf
89 88 com23 d0fPoly0𝑝gPoly0𝑝degg=dg-10Fing-10deggdegf=d+1f-10Finf-10degf
90 89 ralrimdva d0gPoly0𝑝degg=dg-10Fing-10deggfPoly0𝑝degf=d+1f-10Finf-10degf
91 72 90 biimtrid d0fPoly0𝑝degf=df-10Finf-10degffPoly0𝑝degf=d+1f-10Finf-10degf
92 7 10 13 16 62 91 nn0ind degF0fPoly0𝑝degf=degFf-10Finf-10degf
93 4 92 syl FPolySF0𝑝fPoly0𝑝degf=degFf-10Finf-10degf
94 plyssc PolySPoly
95 94 sseli FPolySFPoly
96 eldifsn FPoly0𝑝FPolyF0𝑝
97 fveqeq2 f=Fdegf=degFdegF=degF
98 cnveq f=Ff-1=F-1
99 98 imaeq1d f=Ff-10=F-10
100 99 1 eqtr4di f=Ff-10=R
101 100 eleq1d f=Ff-10FinRFin
102 100 fveq2d f=Ff-10=R
103 fveq2 f=Fdegf=degF
104 102 103 breq12d f=Ff-10degfRdegF
105 101 104 anbi12d f=Ff-10Finf-10degfRFinRdegF
106 97 105 imbi12d f=Fdegf=degFf-10Finf-10degfdegF=degFRFinRdegF
107 106 rspcv FPoly0𝑝fPoly0𝑝degf=degFf-10Finf-10degfdegF=degFRFinRdegF
108 96 107 sylbir FPolyF0𝑝fPoly0𝑝degf=degFf-10Finf-10degfdegF=degFRFinRdegF
109 95 108 sylan FPolySF0𝑝fPoly0𝑝degf=degFf-10Finf-10degfdegF=degFRFinRdegF
110 93 109 mpd FPolySF0𝑝degF=degFRFinRdegF
111 2 110 mpi FPolySF0𝑝RFinRdegF