| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ftalem.1 |
|
| 2 |
|
ftalem.2 |
|
| 3 |
|
ftalem.3 |
|
| 4 |
|
ftalem.4 |
|
| 5 |
|
ftalem4.5 |
|
| 6 |
|
ftalem4.6 |
|
| 7 |
|
ftalem4.7 |
|
| 8 |
|
ftalem4.8 |
|
| 9 |
|
ftalem4.9 |
|
| 10 |
|
ssrab2 |
|
| 11 |
|
nnuz |
|
| 12 |
10 11
|
sseqtri |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
neeq1d |
|
| 15 |
4
|
nnne0d |
|
| 16 |
2 1
|
dgreq0 |
|
| 17 |
3 16
|
syl |
|
| 18 |
|
fveq2 |
|
| 19 |
|
dgr0 |
|
| 20 |
18 19
|
eqtrdi |
|
| 21 |
2 20
|
eqtrid |
|
| 22 |
17 21
|
biimtrrdi |
|
| 23 |
22
|
necon3d |
|
| 24 |
15 23
|
mpd |
|
| 25 |
14 4 24
|
elrabd |
|
| 26 |
25
|
ne0d |
|
| 27 |
|
infssuzcl |
|
| 28 |
12 26 27
|
sylancr |
|
| 29 |
6 28
|
eqeltrid |
|
| 30 |
|
fveq2 |
|
| 31 |
30
|
neeq1d |
|
| 32 |
31
|
elrab |
|
| 33 |
29 32
|
sylib |
|
| 34 |
|
plyf |
|
| 35 |
3 34
|
syl |
|
| 36 |
|
0cn |
|
| 37 |
|
ffvelcdm |
|
| 38 |
35 36 37
|
sylancl |
|
| 39 |
1
|
coef3 |
|
| 40 |
3 39
|
syl |
|
| 41 |
33
|
simpld |
|
| 42 |
41
|
nnnn0d |
|
| 43 |
40 42
|
ffvelcdmd |
|
| 44 |
33
|
simprd |
|
| 45 |
38 43 44
|
divcld |
|
| 46 |
45
|
negcld |
|
| 47 |
41
|
nnrecred |
|
| 48 |
47
|
recnd |
|
| 49 |
46 48
|
cxpcld |
|
| 50 |
7 49
|
eqeltrid |
|
| 51 |
38 5
|
absrpcld |
|
| 52 |
|
fzfid |
|
| 53 |
|
peano2nn0 |
|
| 54 |
42 53
|
syl |
|
| 55 |
|
elfzuz |
|
| 56 |
|
eluznn0 |
|
| 57 |
54 55 56
|
syl2an |
|
| 58 |
40
|
ffvelcdmda |
|
| 59 |
57 58
|
syldan |
|
| 60 |
|
expcl |
|
| 61 |
50 57 60
|
syl2an2r |
|
| 62 |
59 61
|
mulcld |
|
| 63 |
62
|
abscld |
|
| 64 |
52 63
|
fsumrecl |
|
| 65 |
62
|
absge0d |
|
| 66 |
52 63 65
|
fsumge0 |
|
| 67 |
64 66
|
ge0p1rpd |
|
| 68 |
51 67
|
rpdivcld |
|
| 69 |
8 68
|
eqeltrid |
|
| 70 |
|
1rp |
|
| 71 |
|
ifcl |
|
| 72 |
70 69 71
|
sylancr |
|
| 73 |
9 72
|
eqeltrid |
|
| 74 |
50 69 73
|
3jca |
|
| 75 |
33 74
|
jca |
|