Step |
Hyp |
Ref |
Expression |
1 |
|
ftalem.1 |
|
2 |
|
ftalem.2 |
|
3 |
|
ftalem.3 |
|
4 |
|
ftalem.4 |
|
5 |
|
ftalem4.5 |
|
6 |
|
ftalem4.6 |
|
7 |
|
ftalem4.7 |
|
8 |
|
ftalem4.8 |
|
9 |
|
ftalem4.9 |
|
10 |
|
ssrab2 |
|
11 |
|
nnuz |
|
12 |
10 11
|
sseqtri |
|
13 |
|
fveq2 |
|
14 |
13
|
neeq1d |
|
15 |
4
|
nnne0d |
|
16 |
2 1
|
dgreq0 |
|
17 |
3 16
|
syl |
|
18 |
|
fveq2 |
|
19 |
|
dgr0 |
|
20 |
18 19
|
eqtrdi |
|
21 |
2 20
|
eqtrid |
|
22 |
17 21
|
syl6bir |
|
23 |
22
|
necon3d |
|
24 |
15 23
|
mpd |
|
25 |
14 4 24
|
elrabd |
|
26 |
25
|
ne0d |
|
27 |
|
infssuzcl |
|
28 |
12 26 27
|
sylancr |
|
29 |
6 28
|
eqeltrid |
|
30 |
|
fveq2 |
|
31 |
30
|
neeq1d |
|
32 |
31
|
elrab |
|
33 |
29 32
|
sylib |
|
34 |
|
plyf |
|
35 |
3 34
|
syl |
|
36 |
|
0cn |
|
37 |
|
ffvelrn |
|
38 |
35 36 37
|
sylancl |
|
39 |
1
|
coef3 |
|
40 |
3 39
|
syl |
|
41 |
33
|
simpld |
|
42 |
41
|
nnnn0d |
|
43 |
40 42
|
ffvelrnd |
|
44 |
33
|
simprd |
|
45 |
38 43 44
|
divcld |
|
46 |
45
|
negcld |
|
47 |
41
|
nnrecred |
|
48 |
47
|
recnd |
|
49 |
46 48
|
cxpcld |
|
50 |
7 49
|
eqeltrid |
|
51 |
38 5
|
absrpcld |
|
52 |
|
fzfid |
|
53 |
|
peano2nn0 |
|
54 |
42 53
|
syl |
|
55 |
|
elfzuz |
|
56 |
|
eluznn0 |
|
57 |
54 55 56
|
syl2an |
|
58 |
40
|
ffvelrnda |
|
59 |
57 58
|
syldan |
|
60 |
|
expcl |
|
61 |
50 57 60
|
syl2an2r |
|
62 |
59 61
|
mulcld |
|
63 |
62
|
abscld |
|
64 |
52 63
|
fsumrecl |
|
65 |
62
|
absge0d |
|
66 |
52 63 65
|
fsumge0 |
|
67 |
64 66
|
ge0p1rpd |
|
68 |
51 67
|
rpdivcld |
|
69 |
8 68
|
eqeltrid |
|
70 |
|
1rp |
|
71 |
|
ifcl |
|
72 |
70 69 71
|
sylancr |
|
73 |
9 72
|
eqeltrid |
|
74 |
50 69 73
|
3jca |
|
75 |
33 74
|
jca |
|