Metamath Proof Explorer


Theorem ftalem7

Description: Lemma for fta . Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A=coeffF
ftalem.2 N=degF
ftalem.3 φFPolyS
ftalem.4 φN
ftalem7.5 φX
ftalem7.6 φFX0
Assertion ftalem7 φ¬xFXFx

Proof

Step Hyp Ref Expression
1 ftalem.1 A=coeffF
2 ftalem.2 N=degF
3 ftalem.3 φFPolyS
4 ftalem.4 φN
5 ftalem7.5 φX
6 ftalem7.6 φFX0
7 eqid coeffzFz+X=coeffzFz+X
8 eqid degzFz+X=degzFz+X
9 simpr φzz
10 5 adantr φzX
11 9 10 addcld φzz+X
12 cnex V
13 12 a1i φV
14 5 negcld φX
15 14 adantr φzX
16 df-idp Xp=I
17 mptresid I=zz
18 16 17 eqtri Xp=zz
19 18 a1i φXp=zz
20 fconstmpt ×X=zX
21 20 a1i φ×X=zX
22 13 9 15 19 21 offval2 φXpf×X=zzX
23 id zz
24 subneg zXzX=z+X
25 23 5 24 syl2anr φzzX=z+X
26 25 mpteq2dva φzzX=zz+X
27 22 26 eqtrd φXpf×X=zz+X
28 plyf FPolySF:
29 3 28 syl φF:
30 29 feqmptd φF=yFy
31 fveq2 y=z+XFy=Fz+X
32 11 27 30 31 fmptco φFXpf×X=zFz+X
33 plyssc PolySPoly
34 33 3 sselid φFPoly
35 eqid Xpf×X=Xpf×X
36 35 plyremlem XXpf×XPolydegXpf×X=1Xpf×X-10=X
37 14 36 syl φXpf×XPolydegXpf×X=1Xpf×X-10=X
38 37 simp1d φXpf×XPoly
39 addcl zwz+w
40 39 adantl φzwz+w
41 mulcl zwzw
42 41 adantl φzwzw
43 34 38 40 42 plyco φFXpf×XPoly
44 32 43 eqeltrrd φzFz+XPoly
45 32 fveq2d φdegFXpf×X=degzFz+X
46 eqid degXpf×X=degXpf×X
47 2 46 34 38 dgrco φdegFXpf×X=NdegXpf×X
48 37 simp2d φdegXpf×X=1
49 1nn 1
50 48 49 eqeltrdi φdegXpf×X
51 4 50 nnmulcld φNdegXpf×X
52 47 51 eqeltrd φdegFXpf×X
53 45 52 eqeltrrd φdegzFz+X
54 0cn 0
55 fvoveq1 z=0Fz+X=F0+X
56 eqid zFz+X=zFz+X
57 fvex F0+XV
58 55 56 57 fvmpt 0zFz+X0=F0+X
59 54 58 ax-mp zFz+X0=F0+X
60 5 addlidd φ0+X=X
61 60 fveq2d φF0+X=FX
62 59 61 eqtrid φzFz+X0=FX
63 62 6 eqnetrd φzFz+X00
64 7 8 44 53 63 ftalem6 φyzFz+Xy<zFz+X0
65 id yy
66 addcl yXy+X
67 65 5 66 syl2anr φyy+X
68 fvoveq1 z=yFz+X=Fy+X
69 fvex Fy+XV
70 68 56 69 fvmpt yzFz+Xy=Fy+X
71 70 adantl φyzFz+Xy=Fy+X
72 71 fveq2d φyzFz+Xy=Fy+X
73 62 adantr φyzFz+X0=FX
74 73 fveq2d φyzFz+X0=FX
75 72 74 breq12d φyzFz+Xy<zFz+X0Fy+X<FX
76 29 adantr φyF:
77 76 67 ffvelcdmd φyFy+X
78 77 abscld φyFy+X
79 29 5 ffvelcdmd φFX
80 79 abscld φFX
81 80 adantr φyFX
82 78 81 ltnled φyFy+X<FX¬FXFy+X
83 75 82 bitrd φyzFz+Xy<zFz+X0¬FXFy+X
84 83 biimpd φyzFz+Xy<zFz+X0¬FXFy+X
85 2fveq3 x=y+XFx=Fy+X
86 85 breq2d x=y+XFXFxFXFy+X
87 86 notbid x=y+X¬FXFx¬FXFy+X
88 87 rspcev y+X¬FXFy+Xx¬FXFx
89 67 84 88 syl6an φyzFz+Xy<zFz+X0x¬FXFx
90 89 rexlimdva φyzFz+Xy<zFz+X0x¬FXFx
91 64 90 mpd φx¬FXFx
92 rexnal x¬FXFx¬xFXFx
93 91 92 sylib φ¬xFXFx