Metamath Proof Explorer


Theorem ftalem7

Description: Lemma for fta . Shift the minimum away from zero by a change of variables. (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses ftalem.1 A = coeff F
ftalem.2 N = deg F
ftalem.3 φ F Poly S
ftalem.4 φ N
ftalem7.5 φ X
ftalem7.6 φ F X 0
Assertion ftalem7 φ ¬ x F X F x

Proof

Step Hyp Ref Expression
1 ftalem.1 A = coeff F
2 ftalem.2 N = deg F
3 ftalem.3 φ F Poly S
4 ftalem.4 φ N
5 ftalem7.5 φ X
6 ftalem7.6 φ F X 0
7 eqid coeff z F z + X = coeff z F z + X
8 eqid deg z F z + X = deg z F z + X
9 simpr φ z z
10 5 adantr φ z X
11 9 10 addcld φ z z + X
12 cnex V
13 12 a1i φ V
14 5 negcld φ X
15 14 adantr φ z X
16 df-idp X p = I
17 mptresid I = z z
18 16 17 eqtri X p = z z
19 18 a1i φ X p = z z
20 fconstmpt × X = z X
21 20 a1i φ × X = z X
22 13 9 15 19 21 offval2 φ X p f × X = z z X
23 id z z
24 subneg z X z X = z + X
25 23 5 24 syl2anr φ z z X = z + X
26 25 mpteq2dva φ z z X = z z + X
27 22 26 eqtrd φ X p f × X = z z + X
28 plyf F Poly S F :
29 3 28 syl φ F :
30 29 feqmptd φ F = y F y
31 fveq2 y = z + X F y = F z + X
32 11 27 30 31 fmptco φ F X p f × X = z F z + X
33 plyssc Poly S Poly
34 33 3 sseldi φ F Poly
35 eqid X p f × X = X p f × X
36 35 plyremlem X X p f × X Poly deg X p f × X = 1 X p f × X -1 0 = X
37 14 36 syl φ X p f × X Poly deg X p f × X = 1 X p f × X -1 0 = X
38 37 simp1d φ X p f × X Poly
39 addcl z w z + w
40 39 adantl φ z w z + w
41 mulcl z w z w
42 41 adantl φ z w z w
43 34 38 40 42 plyco φ F X p f × X Poly
44 32 43 eqeltrrd φ z F z + X Poly
45 32 fveq2d φ deg F X p f × X = deg z F z + X
46 eqid deg X p f × X = deg X p f × X
47 2 46 34 38 dgrco φ deg F X p f × X = N deg X p f × X
48 37 simp2d φ deg X p f × X = 1
49 1nn 1
50 48 49 eqeltrdi φ deg X p f × X
51 4 50 nnmulcld φ N deg X p f × X
52 47 51 eqeltrd φ deg F X p f × X
53 45 52 eqeltrrd φ deg z F z + X
54 0cn 0
55 fvoveq1 z = 0 F z + X = F 0 + X
56 eqid z F z + X = z F z + X
57 fvex F 0 + X V
58 55 56 57 fvmpt 0 z F z + X 0 = F 0 + X
59 54 58 ax-mp z F z + X 0 = F 0 + X
60 5 addid2d φ 0 + X = X
61 60 fveq2d φ F 0 + X = F X
62 59 61 syl5eq φ z F z + X 0 = F X
63 62 6 eqnetrd φ z F z + X 0 0
64 7 8 44 53 63 ftalem6 φ y z F z + X y < z F z + X 0
65 id y y
66 addcl y X y + X
67 65 5 66 syl2anr φ y y + X
68 fvoveq1 z = y F z + X = F y + X
69 fvex F y + X V
70 68 56 69 fvmpt y z F z + X y = F y + X
71 70 adantl φ y z F z + X y = F y + X
72 71 fveq2d φ y z F z + X y = F y + X
73 62 adantr φ y z F z + X 0 = F X
74 73 fveq2d φ y z F z + X 0 = F X
75 72 74 breq12d φ y z F z + X y < z F z + X 0 F y + X < F X
76 29 adantr φ y F :
77 76 67 ffvelrnd φ y F y + X
78 77 abscld φ y F y + X
79 29 5 ffvelrnd φ F X
80 79 abscld φ F X
81 80 adantr φ y F X
82 78 81 ltnled φ y F y + X < F X ¬ F X F y + X
83 75 82 bitrd φ y z F z + X y < z F z + X 0 ¬ F X F y + X
84 83 biimpd φ y z F z + X y < z F z + X 0 ¬ F X F y + X
85 2fveq3 x = y + X F x = F y + X
86 85 breq2d x = y + X F X F x F X F y + X
87 86 notbid x = y + X ¬ F X F x ¬ F X F y + X
88 87 rspcev y + X ¬ F X F y + X x ¬ F X F x
89 67 84 88 syl6an φ y z F z + X y < z F z + X 0 x ¬ F X F x
90 89 rexlimdva φ y z F z + X y < z F z + X 0 x ¬ F X F x
91 64 90 mpd φ x ¬ F X F x
92 rexnal x ¬ F X F x ¬ x F X F x
93 91 92 sylib φ ¬ x F X F x