Metamath Proof Explorer


Theorem gsum2dlem2

Description: Lemma for gsum2d . (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b B=BaseG
gsum2d.z 0˙=0G
gsum2d.g φGCMnd
gsum2d.a φAV
gsum2d.r φRelA
gsum2d.d φDW
gsum2d.s φdomAD
gsum2d.f φF:AB
gsum2d.w φfinSupp0˙F
Assertion gsum2dlem2 φGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk

Proof

Step Hyp Ref Expression
1 gsum2d.b B=BaseG
2 gsum2d.z 0˙=0G
3 gsum2d.g φGCMnd
4 gsum2d.a φAV
5 gsum2d.r φRelA
6 gsum2d.d φDW
7 gsum2d.s φdomAD
8 gsum2d.f φF:AB
9 gsum2d.w φfinSupp0˙F
10 9 fsuppimpd φFsupp0˙Fin
11 dmfi Fsupp0˙Findomsupp0˙FFin
12 10 11 syl φdomsupp0˙FFin
13 reseq2 x=Ax=A
14 res0 A=
15 13 14 eqtrdi x=Ax=
16 15 reseq2d x=FAx=F
17 res0 F=
18 16 17 eqtrdi x=FAx=
19 18 oveq2d x=GFAx=G
20 mpteq1 x=jxGkAjjFk=jGkAjjFk
21 mpt0 jGkAjjFk=
22 20 21 eqtrdi x=jxGkAjjFk=
23 22 oveq2d x=GjxGkAjjFk=G
24 19 23 eqeq12d x=GFAx=GjxGkAjjFkG=G
25 24 imbi2d x=φGFAx=GjxGkAjjFkφG=G
26 reseq2 x=yAx=Ay
27 26 reseq2d x=yFAx=FAy
28 27 oveq2d x=yGFAx=GFAy
29 mpteq1 x=yjxGkAjjFk=jyGkAjjFk
30 29 oveq2d x=yGjxGkAjjFk=GjyGkAjjFk
31 28 30 eqeq12d x=yGFAx=GjxGkAjjFkGFAy=GjyGkAjjFk
32 31 imbi2d x=yφGFAx=GjxGkAjjFkφGFAy=GjyGkAjjFk
33 reseq2 x=yzAx=Ayz
34 33 reseq2d x=yzFAx=FAyz
35 34 oveq2d x=yzGFAx=GFAyz
36 mpteq1 x=yzjxGkAjjFk=jyzGkAjjFk
37 36 oveq2d x=yzGjxGkAjjFk=GjyzGkAjjFk
38 35 37 eqeq12d x=yzGFAx=GjxGkAjjFkGFAyz=GjyzGkAjjFk
39 38 imbi2d x=yzφGFAx=GjxGkAjjFkφGFAyz=GjyzGkAjjFk
40 reseq2 x=domsupp0˙FAx=Adomsupp0˙F
41 40 reseq2d x=domsupp0˙FFAx=FAdomsupp0˙F
42 41 oveq2d x=domsupp0˙FGFAx=GFAdomsupp0˙F
43 mpteq1 x=domsupp0˙FjxGkAjjFk=jdomsupp0˙FGkAjjFk
44 43 oveq2d x=domsupp0˙FGjxGkAjjFk=Gjdomsupp0˙FGkAjjFk
45 42 44 eqeq12d x=domsupp0˙FGFAx=GjxGkAjjFkGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk
46 45 imbi2d x=domsupp0˙FφGFAx=GjxGkAjjFkφGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk
47 eqidd φG=G
48 oveq1 GFAy=GjyGkAjjFkGFAy+GGFAz=GjyGkAjjFk+GGFAz
49 eqid +G=+G
50 3 adantr φyFin¬zyGCMnd
51 4 resexd φAyzV
52 51 adantr φyFin¬zyAyzV
53 resss AyzA
54 fssres F:ABAyzAFAyz:AyzB
55 8 53 54 sylancl φFAyz:AyzB
56 55 adantr φyFin¬zyFAyz:AyzB
57 8 ffund φFunF
58 57 funresd φFunFAyz
59 58 adantr φyFin¬zyFunFAyz
60 10 adantr φyFin¬zyFsupp0˙Fin
61 8 4 fexd φFV
62 2 fvexi 0˙V
63 ressuppss FV0˙VFAyzsupp0˙Fsupp0˙
64 61 62 63 sylancl φFAyzsupp0˙Fsupp0˙
65 64 adantr φyFin¬zyFAyzsupp0˙Fsupp0˙
66 60 65 ssfid φyFin¬zyFAyzsupp0˙Fin
67 61 resexd φFAyzV
68 isfsupp FAyzV0˙VfinSupp0˙FAyzFunFAyzFAyzsupp0˙Fin
69 67 62 68 sylancl φfinSupp0˙FAyzFunFAyzFAyzsupp0˙Fin
70 69 adantr φyFin¬zyfinSupp0˙FAyzFunFAyzFAyzsupp0˙Fin
71 59 66 70 mpbir2and φyFin¬zyfinSupp0˙FAyz
72 simprr φyFin¬zy¬zy
73 disjsn yz=¬zy
74 72 73 sylibr φyFin¬zyyz=
75 74 reseq2d φyFin¬zyAyz=A
76 resindi Ayz=AyAz
77 75 76 14 3eqtr3g φyFin¬zyAyAz=
78 resundi Ayz=AyAz
79 78 a1i φyFin¬zyAyz=AyAz
80 1 2 49 50 52 56 71 77 79 gsumsplit φyFin¬zyGFAyz=GFAyzAy+GGFAyzAz
81 ssun1 yyz
82 ssres2 yyzAyAyz
83 resabs1 AyAyzFAyzAy=FAy
84 81 82 83 mp2b FAyzAy=FAy
85 84 oveq2i GFAyzAy=GFAy
86 ssun2 zyz
87 ssres2 zyzAzAyz
88 resabs1 AzAyzFAyzAz=FAz
89 86 87 88 mp2b FAyzAz=FAz
90 89 oveq2i GFAyzAz=GFAz
91 85 90 oveq12i GFAyzAy+GGFAyzAz=GFAy+GGFAz
92 80 91 eqtrdi φyFin¬zyGFAyz=GFAy+GGFAz
93 simprl φyFin¬zyyFin
94 1 2 3 4 5 6 7 8 9 gsum2dlem1 φGkAjjFkB
95 94 ad2antrr φyFin¬zyjyGkAjjFkB
96 vex zV
97 96 a1i φyFin¬zyzV
98 sneq j=zj=z
99 98 imaeq2d j=zAj=Az
100 oveq1 j=zjFk=zFk
101 99 100 mpteq12dv j=zkAjjFk=kAzzFk
102 101 oveq2d j=zGkAjjFk=GkAzzFk
103 102 eleq1d j=zGkAjjFkBGkAzzFkB
104 103 imbi2d j=zφGkAjjFkBφGkAzzFkB
105 104 94 chvarvv φGkAzzFkB
106 105 adantr φyFin¬zyGkAzzFkB
107 1 49 50 93 95 97 72 106 102 gsumunsn φyFin¬zyGjyzGkAjjFk=GjyGkAjjFk+GGkAzzFk
108 98 reseq2d j=zAj=Az
109 108 reseq2d j=zFAj=FAz
110 109 oveq2d j=zGFAj=GFAz
111 102 110 eqeq12d j=zGkAjjFk=GFAjGkAzzFk=GFAz
112 111 imbi2d j=zφGkAjjFk=GFAjφGkAzzFk=GFAz
113 imaexg AVAjV
114 4 113 syl φAjV
115 vex jV
116 vex kV
117 115 116 elimasn kAjjkA
118 df-ov jFk=Fjk
119 8 ffvelcdmda φjkAFjkB
120 118 119 eqeltrid φjkAjFkB
121 117 120 sylan2b φkAjjFkB
122 121 fmpttd φkAjjFk:AjB
123 funmpt FunkAjjFk
124 123 a1i φFunkAjjFk
125 rnfi Fsupp0˙Finransupp0˙FFin
126 10 125 syl φransupp0˙FFin
127 117 biimpi kAjjkA
128 115 116 opelrn jksupp0˙Fkransupp0˙F
129 128 con3i ¬kransupp0˙F¬jksupp0˙F
130 127 129 anim12i kAj¬kransupp0˙FjkA¬jksupp0˙F
131 eldif kAjransupp0˙FkAj¬kransupp0˙F
132 eldif jkAsupp0˙FjkA¬jksupp0˙F
133 130 131 132 3imtr4i kAjransupp0˙FjkAsupp0˙F
134 ssidd φFsupp0˙Fsupp0˙
135 62 a1i φ0˙V
136 8 134 4 135 suppssr φjkAsupp0˙FFjk=0˙
137 118 136 eqtrid φjkAsupp0˙FjFk=0˙
138 133 137 sylan2 φkAjransupp0˙FjFk=0˙
139 138 114 suppss2 φkAjjFksupp0˙ransupp0˙F
140 126 139 ssfid φkAjjFksupp0˙Fin
141 114 mptexd φkAjjFkV
142 isfsupp kAjjFkV0˙VfinSupp0˙kAjjFkFunkAjjFkkAjjFksupp0˙Fin
143 141 62 142 sylancl φfinSupp0˙kAjjFkFunkAjjFkkAjjFksupp0˙Fin
144 124 140 143 mpbir2and φfinSupp0˙kAjjFk
145 2ndconst jV2ndj×Aj:j×Aj1-1 ontoAj
146 115 145 mp1i φ2ndj×Aj:j×Aj1-1 ontoAj
147 1 2 3 114 122 144 146 gsumf1o φGkAjjFk=GkAjjFk2ndj×Aj
148 1st2nd2 xj×Ajx=1stx2ndx
149 xp1st xj×Aj1stxj
150 elsni 1stxj1stx=j
151 149 150 syl xj×Aj1stx=j
152 151 opeq1d xj×Aj1stx2ndx=j2ndx
153 148 152 eqtrd xj×Ajx=j2ndx
154 153 fveq2d xj×AjFx=Fj2ndx
155 df-ov jF2ndx=Fj2ndx
156 154 155 eqtr4di xj×AjFx=jF2ndx
157 156 mpteq2ia xj×AjFx=xj×AjjF2ndx
158 8 feqmptd φF=xAFx
159 158 reseq1d φFAj=xAFxAj
160 resss AjA
161 resmpt AjAxAFxAj=xAjFx
162 160 161 ax-mp xAFxAj=xAjFx
163 ressn Aj=j×Aj
164 163 mpteq1i xAjFx=xj×AjFx
165 162 164 eqtri xAFxAj=xj×AjFx
166 159 165 eqtrdi φFAj=xj×AjFx
167 xp2nd xj×Aj2ndxAj
168 167 adantl φxj×Aj2ndxAj
169 fo2nd 2nd:VontoV
170 fof 2nd:VontoV2nd:VV
171 169 170 mp1i φ2nd:VV
172 171 feqmptd φ2nd=xV2ndx
173 172 reseq1d φ2ndj×Aj=xV2ndxj×Aj
174 ssv j×AjV
175 resmpt j×AjVxV2ndxj×Aj=xj×Aj2ndx
176 174 175 ax-mp xV2ndxj×Aj=xj×Aj2ndx
177 173 176 eqtrdi φ2ndj×Aj=xj×Aj2ndx
178 eqidd φkAjjFk=kAjjFk
179 oveq2 k=2ndxjFk=jF2ndx
180 168 177 178 179 fmptco φkAjjFk2ndj×Aj=xj×AjjF2ndx
181 157 166 180 3eqtr4a φFAj=kAjjFk2ndj×Aj
182 181 oveq2d φGFAj=GkAjjFk2ndj×Aj
183 147 182 eqtr4d φGkAjjFk=GFAj
184 112 183 chvarvv φGkAzzFk=GFAz
185 184 adantr φyFin¬zyGkAzzFk=GFAz
186 185 oveq2d φyFin¬zyGjyGkAjjFk+GGkAzzFk=GjyGkAjjFk+GGFAz
187 107 186 eqtrd φyFin¬zyGjyzGkAjjFk=GjyGkAjjFk+GGFAz
188 92 187 eqeq12d φyFin¬zyGFAyz=GjyzGkAjjFkGFAy+GGFAz=GjyGkAjjFk+GGFAz
189 48 188 imbitrrid φyFin¬zyGFAy=GjyGkAjjFkGFAyz=GjyzGkAjjFk
190 189 expcom yFin¬zyφGFAy=GjyGkAjjFkGFAyz=GjyzGkAjjFk
191 190 a2d yFin¬zyφGFAy=GjyGkAjjFkφGFAyz=GjyzGkAjjFk
192 25 32 39 46 47 191 findcard2s domsupp0˙FFinφGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk
193 12 192 mpcom φGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk