Metamath Proof Explorer


Theorem gsumpropd2lem

Description: Lemma for gsumpropd2 . (Contributed by Thierry Arnoux, 28-Jun-2017)

Ref Expression
Hypotheses gsumpropd2.f φFV
gsumpropd2.g φGW
gsumpropd2.h φHX
gsumpropd2.b φBaseG=BaseH
gsumpropd2.c φsBaseGtBaseGs+GtBaseG
gsumpropd2.e φsBaseGtBaseGs+Gt=s+Ht
gsumpropd2.n φFunF
gsumpropd2.r φranFBaseG
gsumprop2dlem.1 A=F-1VsBaseG|tBaseGs+Gt=tt+Gs=t
gsumprop2dlem.2 B=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
Assertion gsumpropd2lem φGF=HF

Proof

Step Hyp Ref Expression
1 gsumpropd2.f φFV
2 gsumpropd2.g φGW
3 gsumpropd2.h φHX
4 gsumpropd2.b φBaseG=BaseH
5 gsumpropd2.c φsBaseGtBaseGs+GtBaseG
6 gsumpropd2.e φsBaseGtBaseGs+Gt=s+Ht
7 gsumpropd2.n φFunF
8 gsumpropd2.r φranFBaseG
9 gsumprop2dlem.1 A=F-1VsBaseG|tBaseGs+Gt=tt+Gs=t
10 gsumprop2dlem.2 B=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
11 4 adantr φsBaseGBaseG=BaseH
12 6 eqeq1d φsBaseGtBaseGs+Gt=ts+Ht=t
13 6 oveqrspc2v φaBaseGbBaseGa+Gb=a+Hb
14 13 oveqrspc2v φtBaseGsBaseGt+Gs=t+Hs
15 14 ancom2s φsBaseGtBaseGt+Gs=t+Hs
16 15 eqeq1d φsBaseGtBaseGt+Gs=tt+Hs=t
17 12 16 anbi12d φsBaseGtBaseGs+Gt=tt+Gs=ts+Ht=tt+Hs=t
18 17 anassrs φsBaseGtBaseGs+Gt=tt+Gs=ts+Ht=tt+Hs=t
19 11 18 raleqbidva φsBaseGtBaseGs+Gt=tt+Gs=ttBaseHs+Ht=tt+Hs=t
20 4 19 rabeqbidva φsBaseG|tBaseGs+Gt=tt+Gs=t=sBaseH|tBaseHs+Ht=tt+Hs=t
21 20 sseq2d φranFsBaseG|tBaseGs+Gt=tt+Gs=tranFsBaseH|tBaseHs+Ht=tt+Hs=t
22 eqidd φBaseG=BaseG
23 22 4 6 grpidpropd φ0G=0H
24 simprl φnmdomF=mnnm
25 8 ad2antrr φnmdomF=mnsmnranFBaseG
26 7 ad2antrr φnmdomF=mnsmnFunF
27 simpr φnmdomF=mnsmnsmn
28 simplrr φnmdomF=mnsmndomF=mn
29 27 28 eleqtrrd φnmdomF=mnsmnsdomF
30 fvelrn FunFsdomFFsranF
31 26 29 30 syl2anc φnmdomF=mnsmnFsranF
32 25 31 sseldd φnmdomF=mnsmnFsBaseG
33 5 adantlr φnmdomF=mnsBaseGtBaseGs+GtBaseG
34 6 adantlr φnmdomF=mnsBaseGtBaseGs+Gt=s+Ht
35 24 32 33 34 seqfeq4 φnmdomF=mnseqm+GFn=seqm+HFn
36 35 eqeq2d φnmdomF=mnx=seqm+GFnx=seqm+HFn
37 36 anassrs φnmdomF=mnx=seqm+GFnx=seqm+HFn
38 37 pm5.32da φnmdomF=mnx=seqm+GFndomF=mnx=seqm+HFn
39 38 rexbidva φnmdomF=mnx=seqm+GFnnmdomF=mnx=seqm+HFn
40 39 exbidv φmnmdomF=mnx=seqm+GFnmnmdomF=mnx=seqm+HFn
41 40 iotabidv φιx|mnmdomF=mnx=seqm+GFn=ιx|mnmdomF=mnx=seqm+HFn
42 20 difeq2d φVsBaseG|tBaseGs+Gt=tt+Gs=t=VsBaseH|tBaseHs+Ht=tt+Hs=t
43 42 imaeq2d φF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
44 43 9 10 3eqtr4g φA=B
45 44 fveq2d φA=B
46 45 fveq2d φseq1+GFfA=seq1+GFfB
47 46 adantr φf:1A1-1 ontoAseq1+GFfA=seq1+GFfB
48 simpr φf:1A1-1 ontoAB1B1
49 8 ad3antrrr φf:1A1-1 ontoAB1a1BranFBaseG
50 f1ofun f:1A1-1 ontoAFunf
51 50 ad3antlr φf:1A1-1 ontoAB1a1BFunf
52 simpr φf:1A1-1 ontoAB1a1Ba1B
53 f1odm f:1A1-1 ontoAdomf=1A
54 53 ad3antlr φf:1A1-1 ontoAB1a1Bdomf=1A
55 45 oveq2d φ1A=1B
56 55 ad3antrrr φf:1A1-1 ontoAB1a1B1A=1B
57 54 56 eqtrd φf:1A1-1 ontoAB1a1Bdomf=1B
58 52 57 eleqtrrd φf:1A1-1 ontoAB1a1Badomf
59 fvco FunfadomfFfa=Ffa
60 51 58 59 syl2anc φf:1A1-1 ontoAB1a1BFfa=Ffa
61 7 ad3antrrr φf:1A1-1 ontoAB1a1BFunF
62 difpreima FunFF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VF-1sBaseG|tBaseGs+Gt=tt+Gs=t
63 7 62 syl φF-1VsBaseG|tBaseGs+Gt=tt+Gs=t=F-1VF-1sBaseG|tBaseGs+Gt=tt+Gs=t
64 9 63 eqtrid φA=F-1VF-1sBaseG|tBaseGs+Gt=tt+Gs=t
65 difss F-1VF-1sBaseG|tBaseGs+Gt=tt+Gs=tF-1V
66 64 65 eqsstrdi φAF-1V
67 dfdm4 domF=ranF-1
68 dfrn4 ranF-1=F-1V
69 67 68 eqtri domF=F-1V
70 66 69 sseqtrrdi φAdomF
71 70 ad3antrrr φf:1A1-1 ontoAB1a1BAdomF
72 f1of f:1A1-1 ontoAf:1AA
73 72 ad3antlr φf:1A1-1 ontoAB1a1Bf:1AA
74 52 56 eleqtrrd φf:1A1-1 ontoAB1a1Ba1A
75 73 74 ffvelcdmd φf:1A1-1 ontoAB1a1BfaA
76 71 75 sseldd φf:1A1-1 ontoAB1a1BfadomF
77 fvelrn FunFfadomFFfaranF
78 61 76 77 syl2anc φf:1A1-1 ontoAB1a1BFfaranF
79 60 78 eqeltrd φf:1A1-1 ontoAB1a1BFfaranF
80 49 79 sseldd φf:1A1-1 ontoAB1a1BFfaBaseG
81 5 caovclg φaBaseGbBaseGa+GbBaseG
82 81 ad4ant14 φf:1A1-1 ontoAB1aBaseGbBaseGa+GbBaseG
83 13 ad4ant14 φf:1A1-1 ontoAB1aBaseGbBaseGa+Gb=a+Hb
84 48 80 82 83 seqfeq4 φf:1A1-1 ontoAB1seq1+GFfB=seq1+HFfB
85 simpr φ¬B1¬B1
86 1z 1
87 seqfn 1seq1+GFfFn1
88 fndm seq1+GFfFn1domseq1+GFf=1
89 86 87 88 mp2b domseq1+GFf=1
90 89 eleq2i Bdomseq1+GFfB1
91 85 90 sylnibr φ¬B1¬Bdomseq1+GFf
92 ndmfv ¬Bdomseq1+GFfseq1+GFfB=
93 91 92 syl φ¬B1seq1+GFfB=
94 seqfn 1seq1+HFfFn1
95 fndm seq1+HFfFn1domseq1+HFf=1
96 86 94 95 mp2b domseq1+HFf=1
97 96 eleq2i Bdomseq1+HFfB1
98 85 97 sylnibr φ¬B1¬Bdomseq1+HFf
99 ndmfv ¬Bdomseq1+HFfseq1+HFfB=
100 98 99 syl φ¬B1seq1+HFfB=
101 93 100 eqtr4d φ¬B1seq1+GFfB=seq1+HFfB
102 101 adantlr φf:1A1-1 ontoA¬B1seq1+GFfB=seq1+HFfB
103 84 102 pm2.61dan φf:1A1-1 ontoAseq1+GFfB=seq1+HFfB
104 47 103 eqtrd φf:1A1-1 ontoAseq1+GFfA=seq1+HFfB
105 104 eqeq2d φf:1A1-1 ontoAx=seq1+GFfAx=seq1+HFfB
106 105 pm5.32da φf:1A1-1 ontoAx=seq1+GFfAf:1A1-1 ontoAx=seq1+HFfB
107 55 f1oeq2d φf:1A1-1 ontoAf:1B1-1 ontoA
108 44 f1oeq3d φf:1B1-1 ontoAf:1B1-1 ontoB
109 107 108 bitrd φf:1A1-1 ontoAf:1B1-1 ontoB
110 109 anbi1d φf:1A1-1 ontoAx=seq1+HFfBf:1B1-1 ontoBx=seq1+HFfB
111 106 110 bitrd φf:1A1-1 ontoAx=seq1+GFfAf:1B1-1 ontoBx=seq1+HFfB
112 111 exbidv φff:1A1-1 ontoAx=seq1+GFfAff:1B1-1 ontoBx=seq1+HFfB
113 112 iotabidv φιx|ff:1A1-1 ontoAx=seq1+GFfA=ιx|ff:1B1-1 ontoBx=seq1+HFfB
114 41 113 ifeq12d φifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1A1-1 ontoAx=seq1+GFfA=ifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1B1-1 ontoBx=seq1+HFfB
115 21 23 114 ifbieq12d φifranFsBaseG|tBaseGs+Gt=tt+Gs=t0GifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1A1-1 ontoAx=seq1+GFfA=ifranFsBaseH|tBaseHs+Ht=tt+Hs=t0HifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1B1-1 ontoBx=seq1+HFfB
116 eqid BaseG=BaseG
117 eqid 0G=0G
118 eqid +G=+G
119 eqid sBaseG|tBaseGs+Gt=tt+Gs=t=sBaseG|tBaseGs+Gt=tt+Gs=t
120 9 a1i φA=F-1VsBaseG|tBaseGs+Gt=tt+Gs=t
121 eqidd φdomF=domF
122 116 117 118 119 120 2 1 121 gsumvalx φGF=ifranFsBaseG|tBaseGs+Gt=tt+Gs=t0GifdomFranιx|mnmdomF=mnx=seqm+GFnιx|ff:1A1-1 ontoAx=seq1+GFfA
123 eqid BaseH=BaseH
124 eqid 0H=0H
125 eqid +H=+H
126 eqid sBaseH|tBaseHs+Ht=tt+Hs=t=sBaseH|tBaseHs+Ht=tt+Hs=t
127 10 a1i φB=F-1VsBaseH|tBaseHs+Ht=tt+Hs=t
128 123 124 125 126 127 3 1 121 gsumvalx φHF=ifranFsBaseH|tBaseHs+Ht=tt+Hs=t0HifdomFranιx|mnmdomF=mnx=seqm+HFnιx|ff:1B1-1 ontoBx=seq1+HFfB
129 115 122 128 3eqtr4d φGF=HF