| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumpropd2.f |
|
| 2 |
|
gsumpropd2.g |
|
| 3 |
|
gsumpropd2.h |
|
| 4 |
|
gsumpropd2.b |
|
| 5 |
|
gsumpropd2.c |
|
| 6 |
|
gsumpropd2.e |
|
| 7 |
|
gsumpropd2.n |
|
| 8 |
|
gsumpropd2.r |
|
| 9 |
|
gsumprop2dlem.1 |
|
| 10 |
|
gsumprop2dlem.2 |
|
| 11 |
4
|
adantr |
|
| 12 |
6
|
eqeq1d |
|
| 13 |
6
|
oveqrspc2v |
|
| 14 |
13
|
oveqrspc2v |
|
| 15 |
14
|
ancom2s |
|
| 16 |
15
|
eqeq1d |
|
| 17 |
12 16
|
anbi12d |
|
| 18 |
17
|
anassrs |
|
| 19 |
11 18
|
raleqbidva |
|
| 20 |
4 19
|
rabeqbidva |
|
| 21 |
20
|
sseq2d |
|
| 22 |
|
eqidd |
|
| 23 |
22 4 6
|
grpidpropd |
|
| 24 |
|
simprl |
|
| 25 |
8
|
ad2antrr |
|
| 26 |
7
|
ad2antrr |
|
| 27 |
|
simpr |
|
| 28 |
|
simplrr |
|
| 29 |
27 28
|
eleqtrrd |
|
| 30 |
|
fvelrn |
|
| 31 |
26 29 30
|
syl2anc |
|
| 32 |
25 31
|
sseldd |
|
| 33 |
5
|
adantlr |
|
| 34 |
6
|
adantlr |
|
| 35 |
24 32 33 34
|
seqfeq4 |
|
| 36 |
35
|
eqeq2d |
|
| 37 |
36
|
anassrs |
|
| 38 |
37
|
pm5.32da |
|
| 39 |
38
|
rexbidva |
|
| 40 |
39
|
exbidv |
|
| 41 |
40
|
iotabidv |
|
| 42 |
20
|
difeq2d |
|
| 43 |
42
|
imaeq2d |
|
| 44 |
43 9 10
|
3eqtr4g |
|
| 45 |
44
|
fveq2d |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
adantr |
|
| 48 |
|
simpr |
|
| 49 |
8
|
ad3antrrr |
|
| 50 |
|
f1ofun |
|
| 51 |
50
|
ad3antlr |
|
| 52 |
|
simpr |
|
| 53 |
|
f1odm |
|
| 54 |
53
|
ad3antlr |
|
| 55 |
45
|
oveq2d |
|
| 56 |
55
|
ad3antrrr |
|
| 57 |
54 56
|
eqtrd |
|
| 58 |
52 57
|
eleqtrrd |
|
| 59 |
|
fvco |
|
| 60 |
51 58 59
|
syl2anc |
|
| 61 |
7
|
ad3antrrr |
|
| 62 |
|
difpreima |
|
| 63 |
7 62
|
syl |
|
| 64 |
9 63
|
eqtrid |
|
| 65 |
|
difss |
|
| 66 |
64 65
|
eqsstrdi |
|
| 67 |
|
dfdm4 |
|
| 68 |
|
dfrn4 |
|
| 69 |
67 68
|
eqtri |
|
| 70 |
66 69
|
sseqtrrdi |
|
| 71 |
70
|
ad3antrrr |
|
| 72 |
|
f1of |
|
| 73 |
72
|
ad3antlr |
|
| 74 |
52 56
|
eleqtrrd |
|
| 75 |
73 74
|
ffvelcdmd |
|
| 76 |
71 75
|
sseldd |
|
| 77 |
|
fvelrn |
|
| 78 |
61 76 77
|
syl2anc |
|
| 79 |
60 78
|
eqeltrd |
|
| 80 |
49 79
|
sseldd |
|
| 81 |
5
|
caovclg |
|
| 82 |
81
|
ad4ant14 |
|
| 83 |
13
|
ad4ant14 |
|
| 84 |
48 80 82 83
|
seqfeq4 |
|
| 85 |
|
simpr |
|
| 86 |
|
1z |
|
| 87 |
|
seqfn |
|
| 88 |
|
fndm |
|
| 89 |
86 87 88
|
mp2b |
|
| 90 |
89
|
eleq2i |
|
| 91 |
85 90
|
sylnibr |
|
| 92 |
|
ndmfv |
|
| 93 |
91 92
|
syl |
|
| 94 |
|
seqfn |
|
| 95 |
|
fndm |
|
| 96 |
86 94 95
|
mp2b |
|
| 97 |
96
|
eleq2i |
|
| 98 |
85 97
|
sylnibr |
|
| 99 |
|
ndmfv |
|
| 100 |
98 99
|
syl |
|
| 101 |
93 100
|
eqtr4d |
|
| 102 |
101
|
adantlr |
|
| 103 |
84 102
|
pm2.61dan |
|
| 104 |
47 103
|
eqtrd |
|
| 105 |
104
|
eqeq2d |
|
| 106 |
105
|
pm5.32da |
|
| 107 |
55
|
f1oeq2d |
|
| 108 |
44
|
f1oeq3d |
|
| 109 |
107 108
|
bitrd |
|
| 110 |
109
|
anbi1d |
|
| 111 |
106 110
|
bitrd |
|
| 112 |
111
|
exbidv |
|
| 113 |
112
|
iotabidv |
|
| 114 |
41 113
|
ifeq12d |
|
| 115 |
21 23 114
|
ifbieq12d |
|
| 116 |
|
eqid |
|
| 117 |
|
eqid |
|
| 118 |
|
eqid |
|
| 119 |
|
eqid |
|
| 120 |
9
|
a1i |
|
| 121 |
|
eqidd |
|
| 122 |
116 117 118 119 120 2 1 121
|
gsumvalx |
|
| 123 |
|
eqid |
|
| 124 |
|
eqid |
|
| 125 |
|
eqid |
|
| 126 |
|
eqid |
|
| 127 |
10
|
a1i |
|
| 128 |
123 124 125 126 127 3 1 121
|
gsumvalx |
|
| 129 |
115 122 128
|
3eqtr4d |
|