Metamath Proof Explorer


Theorem hmopidmchi

Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of AkhiezerGlazman p. 64. (Contributed by NM, 21-Apr-2006) (Proof shortened by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses hmopidmch.1 THrmOp
hmopidmch.2 TT=T
Assertion hmopidmchi ranTC

Proof

Step Hyp Ref Expression
1 hmopidmch.1 THrmOp
2 hmopidmch.2 TT=T
3 hmoplin THrmOpTLinOp
4 1 3 ax-mp TLinOp
5 4 rnelshi ranTS
6 eqid norm-=norm-
7 6 hilxmet norm-∞Met
8 eqid MetOpennorm-=MetOpennorm-
9 8 methaus norm-∞MetMetOpennorm-Haus
10 7 9 mp1i f:ranTfvxMetOpennorm-Haus
11 eqid +norm=+norm
12 11 6 hhims norm-=IndMet+norm
13 11 12 8 hhlm v=tMetOpennorm-
14 resss tMetOpennorm-tMetOpennorm-
15 13 14 eqsstri vtMetOpennorm-
16 15 ssbri fvxftMetOpennorm-x
17 16 adantl f:ranTfvxftMetOpennorm-x
18 8 mopntopon norm-∞MetMetOpennorm-TopOn
19 7 18 mp1i f:ranTfvxMetOpennorm-TopOn
20 4 lnopfi T:
21 20 a1i f:ranTfvxT:
22 21 feqmptd f:ranTfvxT=yTy
23 hmopbdoptHIL THrmOpTBndLinOp
24 1 23 ax-mp TBndLinOp
25 lnopcnbd TLinOpTContOpTBndLinOp
26 4 25 ax-mp TContOpTBndLinOp
27 24 26 mpbir TContOp
28 6 8 hhcno ContOp=MetOpennorm-CnMetOpennorm-
29 27 28 eleqtri TMetOpennorm-CnMetOpennorm-
30 22 29 eqeltrrdi f:ranTfvxyTyMetOpennorm-CnMetOpennorm-
31 19 cnmptid f:ranTfvxyyMetOpennorm-CnMetOpennorm-
32 11 hhnv +normNrmCVec
33 11 hhvs -=-v+norm
34 12 8 33 vmcn +normNrmCVec-MetOpennorm-×tMetOpennorm-CnMetOpennorm-
35 32 34 mp1i f:ranTfvx-MetOpennorm-×tMetOpennorm-CnMetOpennorm-
36 19 30 31 35 cnmpt12f f:ranTfvxyTy-yMetOpennorm-CnMetOpennorm-
37 17 36 lmcn f:ranTfvxyTy-yftMetOpennorm-yTy-yx
38 simpl f:ranTfvxf:ranT
39 5 shssii ranT
40 fss f:ranTranTf:
41 38 39 40 sylancl f:ranTfvxf:
42 41 ffvelcdmda f:ranTfvxkfk
43 fveq2 y=fkTy=Tfk
44 id y=fky=fk
45 43 44 oveq12d y=fkTy-y=Tfk-fk
46 eqid yTy-y=yTy-y
47 ovex Tfk-fkV
48 45 46 47 fvmpt fkyTy-yfk=Tfk-fk
49 42 48 syl f:ranTfvxkyTy-yfk=Tfk-fk
50 ffn T:TFn
51 20 50 ax-mp TFn
52 fveq2 y=TxTy=TTx
53 id y=Txy=Tx
54 52 53 eqeq12d y=TxTy=yTTx=Tx
55 54 ralrn TFnyranTTy=yxTTx=Tx
56 51 55 ax-mp yranTTy=yxTTx=Tx
57 20 20 hocoi xTTx=TTx
58 2 fveq1i TTx=Tx
59 57 58 eqtr3di xTTx=Tx
60 56 59 mprgbir yranTTy=y
61 ffvelcdm f:ranTkfkranT
62 61 adantlr f:ranTfvxkfkranT
63 43 44 eqeq12d y=fkTy=yTfk=fk
64 63 rspccv yranTTy=yfkranTTfk=fk
65 60 62 64 mpsyl f:ranTfvxkTfk=fk
66 65 42 eqeltrd f:ranTfvxkTfk
67 hvsubeq0 TfkfkTfk-fk=0Tfk=fk
68 66 42 67 syl2anc f:ranTfvxkTfk-fk=0Tfk=fk
69 65 68 mpbird f:ranTfvxkTfk-fk=0
70 49 69 eqtrd f:ranTfvxkyTy-yfk=0
71 fvco3 f:ranTkyTy-yfk=yTy-yfk
72 71 adantlr f:ranTfvxkyTy-yfk=yTy-yfk
73 ax-hv0cl 0
74 73 elexi 0V
75 74 fvconst2 k×0k=0
76 75 adantl f:ranTfvxk×0k=0
77 70 72 76 3eqtr4d f:ranTfvxkyTy-yfk=×0k
78 77 ralrimiva f:ranTfvxkyTy-yfk=×0k
79 ovex Ty-yV
80 79 46 fnmpti yTy-yFn
81 fnfco yTy-yFnf:yTy-yfFn
82 80 41 81 sylancr f:ranTfvxyTy-yfFn
83 74 fconst ×0:0
84 ffn ×0:0×0Fn
85 83 84 ax-mp ×0Fn
86 eqfnfv yTy-yfFn×0FnyTy-yf=×0kyTy-yfk=×0k
87 82 85 86 sylancl f:ranTfvxyTy-yf=×0kyTy-yfk=×0k
88 78 87 mpbird f:ranTfvxyTy-yf=×0
89 vex xV
90 89 hlimveci fvxx
91 90 adantl f:ranTfvxx
92 fveq2 y=xTy=Tx
93 id y=xy=x
94 92 93 oveq12d y=xTy-y=Tx-x
95 ovex Tx-xV
96 94 46 95 fvmpt xyTy-yx=Tx-x
97 91 96 syl f:ranTfvxyTy-yx=Tx-x
98 37 88 97 3brtr3d f:ranTfvx×0tMetOpennorm-Tx-x
99 73 a1i f:ranTfvx0
100 1zzd f:ranTfvx1
101 nnuz =1
102 101 lmconst MetOpennorm-TopOn01×0tMetOpennorm-0
103 19 99 100 102 syl3anc f:ranTfvx×0tMetOpennorm-0
104 10 98 103 lmmo f:ranTfvxTx-x=0
105 20 ffvelcdmi xTx
106 91 105 syl f:ranTfvxTx
107 hvsubeq0 TxxTx-x=0Tx=x
108 106 91 107 syl2anc f:ranTfvxTx-x=0Tx=x
109 104 108 mpbid f:ranTfvxTx=x
110 fnfvelrn TFnxTxranT
111 51 91 110 sylancr f:ranTfvxTxranT
112 109 111 eqeltrrd f:ranTfvxxranT
113 112 gen2 fxf:ranTfvxxranT
114 isch2 ranTCranTSfxf:ranTfvxxranT
115 5 113 114 mpbir2an ranTC