Metamath Proof Explorer


Theorem iccpnfhmeo

Description: The defined bijection from [ 0 , 1 ] to [ 0 , +oo ] is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypotheses iccpnfhmeo.f F=x01ifx=1+∞x1x
iccpnfhmeo.k K=ordTop𝑡0+∞
Assertion iccpnfhmeo FIsom<,<010+∞FIIHomeoK

Proof

Step Hyp Ref Expression
1 iccpnfhmeo.f F=x01ifx=1+∞x1x
2 iccpnfhmeo.k K=ordTop𝑡0+∞
3 iccssxr 01*
4 xrltso <Or*
5 soss 01*<Or*<Or01
6 3 4 5 mp2 <Or01
7 iccssxr 0+∞*
8 soss 0+∞*<Or*<Or0+∞
9 7 4 8 mp2 <Or0+∞
10 sopo <Or0+∞<Po0+∞
11 9 10 ax-mp <Po0+∞
12 1 iccpnfcnv F:011-1 onto0+∞F-1=y0+∞ify=+∞1y1+y
13 12 simpli F:011-1 onto0+∞
14 f1ofo F:011-1 onto0+∞F:01onto0+∞
15 13 14 ax-mp F:01onto0+∞
16 elicc01 z01z0zz1
17 16 simp1bi z01z
18 17 3ad2ant1 z01w01z<wz
19 elicc01 w01w0ww1
20 19 simp1bi w01w
21 20 3ad2ant2 z01w01z<ww
22 1red z01w01z<w1
23 simp3 z01w01z<wz<w
24 19 simp3bi w01w1
25 24 3ad2ant2 z01w01z<ww1
26 18 21 22 23 25 ltletrd z01w01z<wz<1
27 18 26 gtned z01w01z<w1z
28 27 necomd z01w01z<wz1
29 ifnefalse z1ifz=1+∞z1z=z1z
30 28 29 syl z01w01z<wifz=1+∞z1z=z1z
31 breq2 +∞=ifw=1+∞w1wz1z<+∞z1z<ifw=1+∞w1w
32 breq2 w1w=ifw=1+∞w1wz1z<w1wz1z<ifw=1+∞w1w
33 1re 1
34 resubcl 1z1z
35 33 18 34 sylancr z01w01z<w1z
36 ax-1cn 1
37 18 recnd z01w01z<wz
38 subeq0 1z1z=01=z
39 38 necon3bid 1z1z01z
40 36 37 39 sylancr z01w01z<w1z01z
41 27 40 mpbird z01w01z<w1z0
42 18 35 41 redivcld z01w01z<wz1z
43 42 ltpnfd z01w01z<wz1z<+∞
44 43 adantr z01w01z<ww=1z1z<+∞
45 simpl3 z01w01z<w¬w=1z<w
46 eqid x01x1x=x01x1x
47 eqid TopOpenfld=TopOpenfld
48 46 47 icopnfhmeo x01x1xIsom<,<010+∞x01x1xTopOpenfld𝑡01HomeoTopOpenfld𝑡0+∞
49 48 simpli x01x1xIsom<,<010+∞
50 49 a1i z01w01z<w¬w=1x01x1xIsom<,<010+∞
51 simp1 z01w01z<wz01
52 0xr 0*
53 1xr 1*
54 0le1 01
55 snunico 0*1*01011=01
56 52 53 54 55 mp3an 011=01
57 51 56 eleqtrrdi z01w01z<wz011
58 elun z011z01z1
59 57 58 sylib z01w01z<wz01z1
60 59 ord z01w01z<w¬z01z1
61 elsni z1z=1
62 60 61 syl6 z01w01z<w¬z01z=1
63 62 necon1ad z01w01z<wz1z01
64 28 63 mpd z01w01z<wz01
65 64 adantr z01w01z<w¬w=1z01
66 simp2 z01w01z<ww01
67 66 56 eleqtrrdi z01w01z<ww011
68 elun w011w01w1
69 67 68 sylib z01w01z<ww01w1
70 69 ord z01w01z<w¬w01w1
71 elsni w1w=1
72 70 71 syl6 z01w01z<w¬w01w=1
73 72 con1d z01w01z<w¬w=1w01
74 73 imp z01w01z<w¬w=1w01
75 isorel x01x1xIsom<,<010+∞z01w01z<wx01x1xz<x01x1xw
76 50 65 74 75 syl12anc z01w01z<w¬w=1z<wx01x1xz<x01x1xw
77 45 76 mpbid z01w01z<w¬w=1x01x1xz<x01x1xw
78 id x=zx=z
79 oveq2 x=z1x=1z
80 78 79 oveq12d x=zx1x=z1z
81 ovex z1zV
82 80 46 81 fvmpt z01x01x1xz=z1z
83 65 82 syl z01w01z<w¬w=1x01x1xz=z1z
84 id x=wx=w
85 oveq2 x=w1x=1w
86 84 85 oveq12d x=wx1x=w1w
87 ovex w1wV
88 86 46 87 fvmpt w01x01x1xw=w1w
89 74 88 syl z01w01z<w¬w=1x01x1xw=w1w
90 77 83 89 3brtr3d z01w01z<w¬w=1z1z<w1w
91 31 32 44 90 ifbothda z01w01z<wz1z<ifw=1+∞w1w
92 30 91 eqbrtrd z01w01z<wifz=1+∞z1z<ifw=1+∞w1w
93 92 3expia z01w01z<wifz=1+∞z1z<ifw=1+∞w1w
94 eqeq1 x=zx=1z=1
95 94 80 ifbieq2d x=zifx=1+∞x1x=ifz=1+∞z1z
96 pnfex +∞V
97 96 81 ifex ifz=1+∞z1zV
98 95 1 97 fvmpt z01Fz=ifz=1+∞z1z
99 eqeq1 x=wx=1w=1
100 99 86 ifbieq2d x=wifx=1+∞x1x=ifw=1+∞w1w
101 96 87 ifex ifw=1+∞w1wV
102 100 1 101 fvmpt w01Fw=ifw=1+∞w1w
103 98 102 breqan12d z01w01Fz<Fwifz=1+∞z1z<ifw=1+∞w1w
104 93 103 sylibrd z01w01z<wFz<Fw
105 104 rgen2 z01w01z<wFz<Fw
106 soisoi <Or01<Po0+∞F:01onto0+∞z01w01z<wFz<FwFIsom<,<010+∞
107 6 11 15 105 106 mp4an FIsom<,<010+∞
108 letsr TosetRel
109 108 elexi V
110 109 inex1 01×01V
111 109 inex1 0+∞×0+∞V
112 leiso 01*0+∞*FIsom<,<010+∞FIsom,010+∞
113 3 7 112 mp2an FIsom<,<010+∞FIsom,010+∞
114 107 113 mpbi FIsom,010+∞
115 isores1 FIsom,010+∞FIsom01×01,010+∞
116 114 115 mpbi FIsom01×01,010+∞
117 isores2 FIsom01×01,010+∞FIsom01×01,0+∞×0+∞010+∞
118 116 117 mpbi FIsom01×01,0+∞×0+∞010+∞
119 tsrps TosetRelPosetRel
120 108 119 ax-mp PosetRel
121 ledm *=dom
122 121 psssdm PosetRel01*dom01×01=01
123 120 3 122 mp2an dom01×01=01
124 123 eqcomi 01=dom01×01
125 121 psssdm PosetRel0+∞*dom0+∞×0+∞=0+∞
126 120 7 125 mp2an dom0+∞×0+∞=0+∞
127 126 eqcomi 0+∞=dom0+∞×0+∞
128 124 127 ordthmeo 01×01V0+∞×0+∞VFIsom01×01,0+∞×0+∞010+∞FordTop01×01HomeoordTop0+∞×0+∞
129 110 111 118 128 mp3an FordTop01×01HomeoordTop0+∞×0+∞
130 dfii5 II=ordTop01×01
131 ordtresticc ordTop𝑡0+∞=ordTop0+∞×0+∞
132 2 131 eqtri K=ordTop0+∞×0+∞
133 130 132 oveq12i IIHomeoK=ordTop01×01HomeoordTop0+∞×0+∞
134 129 133 eleqtrri FIIHomeoK
135 107 134 pm3.2i FIsom<,<010+∞FIIHomeoK