Metamath Proof Explorer


Theorem isclmp

Description: The predicate "is a subcomplex module". (Contributed by NM, 31-May-2008) (Revised by AV, 4-Oct-2021)

Ref Expression
Hypotheses isclmp.t ·˙=W
isclmp.a +˙=+W
isclmp.v V=BaseW
isclmp.s S=ScalarW
isclmp.k K=BaseS
Assertion isclmp WCModWGrpS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x

Proof

Step Hyp Ref Expression
1 isclmp.t ·˙=W
2 isclmp.a +˙=+W
3 isclmp.v V=BaseW
4 isclmp.s S=ScalarW
5 isclmp.k K=BaseS
6 4 5 isclm WCModWLModS=fld𝑠KKSubRingfld
7 eqid +S=+S
8 eqid S=S
9 eqid 1S=1S
10 3 2 1 4 5 7 8 9 islmod WLModWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
11 10 3anbi1i WLModS=fld𝑠KKSubRingfldWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfld
12 3anass WGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfldWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfld
13 df-3an WGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
14 13 anbi1i WGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfldWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfld
15 12 14 bitri WGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfldWGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfld
16 an32 WGrpSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xS=fld𝑠KKSubRingfldWGrpSRingS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
17 11 15 16 3bitri WLModS=fld𝑠KKSubRingfldWGrpSRingS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
18 an32 WGrpSRingS=fld𝑠KKSubRingfldWGrpS=fld𝑠KKSubRingfldSRing
19 3anass WGrpS=fld𝑠KKSubRingfldWGrpS=fld𝑠KKSubRingfld
20 19 bicomi WGrpS=fld𝑠KKSubRingfldWGrpS=fld𝑠KKSubRingfld
21 20 anbi1i WGrpS=fld𝑠KKSubRingfldSRingWGrpS=fld𝑠KKSubRingfldSRing
22 18 21 bitri WGrpSRingS=fld𝑠KKSubRingfldWGrpS=fld𝑠KKSubRingfldSRing
23 22 anbi1i WGrpSRingS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xWGrpS=fld𝑠KKSubRingfldSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
24 anass WGrpS=fld𝑠KKSubRingfldSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xWGrpS=fld𝑠KKSubRingfldSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
25 df-3an y·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙x
26 ancom rSy·˙x=r·˙y·˙x1S·˙x=x1S·˙x=xrSy·˙x=r·˙y·˙x
27 25 26 anbi12i y·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙x1S·˙x=xrSy·˙x=r·˙y·˙x
28 an4 y·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙x1S·˙x=xrSy·˙x=r·˙y·˙xy·˙xVy·˙x+˙z=y·˙x+˙y·˙z1S·˙x=xr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x
29 an32 y·˙xVy·˙x+˙z=y·˙x+˙y·˙z1S·˙x=xy·˙xV1S·˙x=xy·˙x+˙z=y·˙x+˙y·˙z
30 ancom y·˙xV1S·˙x=x1S·˙x=xy·˙xV
31 30 anbi1i y·˙xV1S·˙x=xy·˙x+˙z=y·˙x+˙y·˙z1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙z
32 29 31 bitri y·˙xVy·˙x+˙z=y·˙x+˙y·˙z1S·˙x=x1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙z
33 32 anbi1i y·˙xVy·˙x+˙z=y·˙x+˙y·˙z1S·˙x=xr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x
34 27 28 33 3bitri y·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x
35 fveq2 S=fld𝑠K1S=1fld𝑠K
36 eqid fld𝑠K=fld𝑠K
37 eqid 1fld=1fld
38 36 37 subrg1 KSubRingfld1fld=1fld𝑠K
39 38 eqcomd KSubRingfld1fld𝑠K=1fld
40 35 39 sylan9eq S=fld𝑠KKSubRingfld1S=1fld
41 cnfld1 1=1fld
42 40 41 eqtr4di S=fld𝑠KKSubRingfld1S=1
43 42 oveq1d S=fld𝑠KKSubRingfld1S·˙x=1·˙x
44 43 eqeq1d S=fld𝑠KKSubRingfld1S·˙x=x1·˙x=x
45 44 3adant1 WGrpS=fld𝑠KKSubRingfld1S·˙x=x1·˙x=x
46 45 ad2antrr WGrpS=fld𝑠KKSubRingfldrKyKzVxV1S·˙x=x1·˙x=x
47 46 anbi1d WGrpS=fld𝑠KKSubRingfldrKyKzVxV1S·˙x=xy·˙xV1·˙x=xy·˙xV
48 47 anbi1d WGrpS=fld𝑠KKSubRingfldrKyKzVxV1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙z
49 eqid +fld=+fld
50 36 49 ressplusg KSubRingfld+fld=+fld𝑠K
51 50 adantl S=fld𝑠KKSubRingfld+fld=+fld𝑠K
52 cnfldadd +=+fld
53 52 a1i S=fld𝑠KKSubRingfld+=+fld
54 fveq2 S=fld𝑠K+S=+fld𝑠K
55 54 adantr S=fld𝑠KKSubRingfld+S=+fld𝑠K
56 51 53 55 3eqtr4rd S=fld𝑠KKSubRingfld+S=+
57 56 3adant1 WGrpS=fld𝑠KKSubRingfld+S=+
58 57 oveqd WGrpS=fld𝑠KKSubRingfldr+Sy=r+y
59 58 ad2antrr WGrpS=fld𝑠KKSubRingfldrKyKzVxVr+Sy=r+y
60 59 oveq1d WGrpS=fld𝑠KKSubRingfldrKyKzVxVr+Sy·˙x=r+y·˙x
61 60 eqeq1d WGrpS=fld𝑠KKSubRingfldrKyKzVxVr+Sy·˙x=r·˙x+˙y·˙xr+y·˙x=r·˙x+˙y·˙x
62 eqid fld=fld
63 36 62 ressmulr KSubRingfldfld=fld𝑠K
64 63 3ad2ant3 WGrpS=fld𝑠KKSubRingfldfld=fld𝑠K
65 cnfldmul ×=fld
66 65 a1i WGrpS=fld𝑠KKSubRingfld×=fld
67 fveq2 S=fld𝑠KS=fld𝑠K
68 67 3ad2ant2 WGrpS=fld𝑠KKSubRingfldS=fld𝑠K
69 64 66 68 3eqtr4rd WGrpS=fld𝑠KKSubRingfldS=×
70 69 oveqd WGrpS=fld𝑠KKSubRingfldrSy=ry
71 70 ad2antrr WGrpS=fld𝑠KKSubRingfldrKyKzVxVrSy=ry
72 71 oveq1d WGrpS=fld𝑠KKSubRingfldrKyKzVxVrSy·˙x=ry·˙x
73 72 eqeq1d WGrpS=fld𝑠KKSubRingfldrKyKzVxVrSy·˙x=r·˙y·˙xry·˙x=r·˙y·˙x
74 61 73 anbi12d WGrpS=fld𝑠KKSubRingfldrKyKzVxVr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙xr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
75 48 74 anbi12d WGrpS=fld𝑠KKSubRingfldrKyKzVxV1S·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
76 34 75 bitrid WGrpS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
77 76 2ralbidva WGrpS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
78 77 2ralbidva WGrpS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xrKyKzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
79 ralrot3 yKzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
80 79 ralbii rKyKzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xrKxVyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
81 ralcom rKxVyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVrKyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
82 80 81 bitri rKyKzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVrKyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
83 ralcom rKyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xyKrKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
84 83 ralbii xVrKyKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVyKrKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
85 ralcom rKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
86 85 2ralbii xVyKrKzV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
87 82 84 86 3bitri rKyKzVxV1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxVyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
88 78 87 bitrdi WGrpS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xxVyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
89 36 subrgring KSubRingfldfld𝑠KRing
90 89 3ad2ant3 WGrpS=fld𝑠KKSubRingfldfld𝑠KRing
91 eleq1 S=fld𝑠KSRingfld𝑠KRing
92 91 3ad2ant2 WGrpS=fld𝑠KKSubRingfldSRingfld𝑠KRing
93 90 92 mpbird WGrpS=fld𝑠KKSubRingfldSRing
94 93 biantrurd WGrpS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=x
95 3 grpbn0 WGrpV
96 95 3ad2ant1 WGrpS=fld𝑠KKSubRingfldV
97 37 subrg1cl KSubRingfld1fldK
98 97 ne0d KSubRingfldK
99 98 3ad2ant3 WGrpS=fld𝑠KKSubRingfldK
100 ancom 1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xV
101 100 anbi1i 1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
102 101 a1i VK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
103 102 ralbidv VKrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xrKy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
104 r19.28zv KrKy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
105 104 adantl VKrKy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
106 103 105 bitrd VKrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
107 anass y·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
108 anass 1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
109 108 anbi2i y·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
110 ancom y·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z
111 107 109 110 3bitri y·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z
112 106 111 bitrdi VKrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z
113 112 ralbidv VKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzV1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z
114 r19.28zv VzV1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
115 114 adantr VKzV1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
116 113 115 bitrd VKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
117 anass 1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
118 oveq1 z=rz+y=r+y
119 118 oveq1d z=rz+y·˙x=r+y·˙x
120 oveq1 z=rz·˙x=r·˙x
121 120 oveq1d z=rz·˙x+˙y·˙x=r·˙x+˙y·˙x
122 119 121 eqeq12d z=rz+y·˙x=z·˙x+˙y·˙xr+y·˙x=r·˙x+˙y·˙x
123 oveq1 z=rzy=ry
124 123 oveq1d z=rzy·˙x=ry·˙x
125 oveq1 z=rz·˙y·˙x=r·˙y·˙x
126 124 125 eqeq12d z=rzy·˙x=z·˙y·˙xry·˙x=r·˙y·˙x
127 122 126 anbi12d z=rz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙xr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
128 127 cbvralvw zKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙xrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
129 128 3anbi3i y·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x
130 3anan32 y·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
131 129 130 bitri y·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z
132 131 bicomi y·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙zy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
133 132 anbi2i 1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
134 117 133 bitri 1·˙x=xy·˙xVrKr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xzVy·˙x+˙z=y·˙x+˙y·˙z1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
135 116 134 bitrdi VKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
136 135 ralbidv VKyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xyK1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
137 r19.28zv KyK1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
138 137 adantl VKyK1·˙x=xy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
139 136 138 bitrd VKyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
140 96 99 139 syl2anc WGrpS=fld𝑠KKSubRingfldyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙x1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
141 140 ralbidv WGrpS=fld𝑠KKSubRingfldxVyKzVrK1·˙x=xy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+y·˙x=r·˙x+˙y·˙xry·˙x=r·˙y·˙xxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
142 88 94 141 3bitr3d WGrpS=fld𝑠KKSubRingfldSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
143 142 pm5.32i WGrpS=fld𝑠KKSubRingfldSRingrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xWGrpS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
144 23 24 143 3bitri WGrpSRingS=fld𝑠KKSubRingfldrKyKzVxVy·˙xVy·˙x+˙z=y·˙x+˙y·˙zr+Sy·˙x=r·˙x+˙y·˙xrSy·˙x=r·˙y·˙x1S·˙x=xWGrpS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x
145 6 17 144 3bitri WCModWGrpS=fld𝑠KKSubRingfldxV1·˙x=xyKy·˙xVzVy·˙x+˙z=y·˙x+˙y·˙zzKz+y·˙x=z·˙x+˙y·˙xzy·˙x=z·˙y·˙x