Metamath Proof Explorer


Theorem itgioocnicc

Description: The integral of a piecewise continuous function F on an open interval is equal to the integral of the continuous function G , in the corresponding closed interval. G is equal to F on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgioocnicc.a φA
itgioocnicc.b φB
itgioocnicc.f φF:domF
itgioocnicc.fcn φFAB:ABcn
itgioocnicc.fdom φABdomF
itgioocnicc.r φRFABlimA
itgioocnicc.l φLFABlimB
itgioocnicc.g G=xABifx=ARifx=BLFx
Assertion itgioocnicc φG𝐿1ABGxdx=ABFxdx

Proof

Step Hyp Ref Expression
1 itgioocnicc.a φA
2 itgioocnicc.b φB
3 itgioocnicc.f φF:domF
4 itgioocnicc.fcn φFAB:ABcn
5 itgioocnicc.fdom φABdomF
6 itgioocnicc.r φRFABlimA
7 itgioocnicc.l φLFABlimB
8 itgioocnicc.g G=xABifx=ARifx=BLFx
9 iftrue x=Aifx=ARifx=BLFx=R
10 iftrue x=Aifx=ARifx=BLFABx=R
11 9 10 eqtr4d x=Aifx=ARifx=BLFx=ifx=ARifx=BLFABx
12 11 adantl φxABx=Aifx=ARifx=BLFx=ifx=ARifx=BLFABx
13 iftrue x=Bifx=BLFx=L
14 iftrue x=Bifx=BLFABx=L
15 13 14 eqtr4d x=Bifx=BLFx=ifx=BLFABx
16 15 adantl ¬x=Ax=Bifx=BLFx=ifx=BLFABx
17 16 ifeq2d ¬x=Ax=Bifx=ARifx=BLFx=ifx=ARifx=BLFABx
18 17 adantll φxAB¬x=Ax=Bifx=ARifx=BLFx=ifx=ARifx=BLFABx
19 iffalse ¬x=Aifx=ARifx=BLFx=ifx=BLFx
20 19 ad2antlr φxAB¬x=A¬x=Bifx=ARifx=BLFx=ifx=BLFx
21 iffalse ¬x=Bifx=BLFx=Fx
22 21 adantl φxAB¬x=A¬x=Bifx=BLFx=Fx
23 iffalse ¬x=Aifx=ARifx=BLFABx=ifx=BLFABx
24 23 ad2antlr φxAB¬x=A¬x=Bifx=ARifx=BLFABx=ifx=BLFABx
25 iffalse ¬x=Bifx=BLFABx=FABx
26 25 adantl φxAB¬x=A¬x=Bifx=BLFABx=FABx
27 1 adantr φxABA
28 27 rexrd φxABA*
29 28 ad2antrr φxAB¬x=A¬x=BA*
30 2 rexrd φB*
31 30 ad3antrrr φxAB¬x=A¬x=BB*
32 2 adantr φxABB
33 simpr φxABxAB
34 eliccre ABxABx
35 27 32 33 34 syl3anc φxABx
36 35 ad2antrr φxAB¬x=A¬x=Bx
37 1 ad2antrr φxAB¬x=AA
38 35 adantr φxAB¬x=Ax
39 30 adantr φxABB*
40 iccgelb A*B*xABAx
41 28 39 33 40 syl3anc φxABAx
42 41 adantr φxAB¬x=AAx
43 neqne ¬x=AxA
44 43 adantl φxAB¬x=AxA
45 37 38 42 44 leneltd φxAB¬x=AA<x
46 45 adantr φxAB¬x=A¬x=BA<x
47 35 adantr φxAB¬x=Bx
48 2 ad2antrr φxAB¬x=BB
49 iccleub A*B*xABxB
50 28 39 33 49 syl3anc φxABxB
51 50 adantr φxAB¬x=BxB
52 eqcom x=BB=x
53 52 notbii ¬x=B¬B=x
54 53 biimpi ¬x=B¬B=x
55 54 neqned ¬x=BBx
56 55 adantl φxAB¬x=BBx
57 47 48 51 56 leneltd φxAB¬x=Bx<B
58 57 adantlr φxAB¬x=A¬x=Bx<B
59 29 31 36 46 58 eliood φxAB¬x=A¬x=BxAB
60 fvres xABFABx=Fx
61 59 60 syl φxAB¬x=A¬x=BFABx=Fx
62 24 26 61 3eqtrrd φxAB¬x=A¬x=BFx=ifx=ARifx=BLFABx
63 20 22 62 3eqtrd φxAB¬x=A¬x=Bifx=ARifx=BLFx=ifx=ARifx=BLFABx
64 18 63 pm2.61dan φxAB¬x=Aifx=ARifx=BLFx=ifx=ARifx=BLFABx
65 12 64 pm2.61dan φxABifx=ARifx=BLFx=ifx=ARifx=BLFABx
66 65 mpteq2dva φxABifx=ARifx=BLFx=xABifx=ARifx=BLFABx
67 8 66 eqtrid φG=xABifx=ARifx=BLFABx
68 nfv xφ
69 eqid xABifx=ARifx=BLFABx=xABifx=ARifx=BLFABx
70 68 69 1 2 4 7 6 cncfiooicc φxABifx=ARifx=BLFABx:ABcn
71 67 70 eqeltrd φG:ABcn
72 cniccibl ABG:ABcnG𝐿1
73 1 2 71 72 syl3anc φG𝐿1
74 9 adantl φxABx=Aifx=ARifx=BLFx=R
75 limccl FABlimA
76 75 6 sselid φR
77 76 ad2antrr φxABx=AR
78 74 77 eqeltrd φxABx=Aifx=ARifx=BLFx
79 19 13 sylan9eq ¬x=Ax=Bifx=ARifx=BLFx=L
80 79 adantll φxAB¬x=Ax=Bifx=ARifx=BLFx=L
81 limccl FABlimB
82 81 7 sselid φL
83 82 ad3antrrr φxAB¬x=Ax=BL
84 80 83 eqeltrd φxAB¬x=Ax=Bifx=ARifx=BLFx
85 19 21 sylan9eq ¬x=A¬x=Bifx=ARifx=BLFx=Fx
86 85 adantll φxAB¬x=A¬x=Bifx=ARifx=BLFx=Fx
87 61 eqcomd φxAB¬x=A¬x=BFx=FABx
88 cncff FAB:ABcnFAB:AB
89 4 88 syl φFAB:AB
90 89 ad3antrrr φxAB¬x=A¬x=BFAB:AB
91 90 59 ffvelcdmd φxAB¬x=A¬x=BFABx
92 87 91 eqeltrd φxAB¬x=A¬x=BFx
93 86 92 eqeltrd φxAB¬x=A¬x=Bifx=ARifx=BLFx
94 84 93 pm2.61dan φxAB¬x=Aifx=ARifx=BLFx
95 78 94 pm2.61dan φxABifx=ARifx=BLFx
96 8 fvmpt2 xABifx=ARifx=BLFxGx=ifx=ARifx=BLFx
97 33 95 96 syl2anc φxABGx=ifx=ARifx=BLFx
98 97 95 eqeltrd φxABGx
99 1 2 98 itgioo φABGxdx=ABGxdx
100 99 eqcomd φABGxdx=ABGxdx
101 ioossicc ABAB
102 101 sseli xABxAB
103 102 97 sylan2 φxABGx=ifx=ARifx=BLFx
104 1 adantr φxABA
105 eliooord xABA<xx<B
106 105 simpld xABA<x
107 106 adantl φxABA<x
108 104 107 gtned φxABxA
109 108 neneqd φxAB¬x=A
110 109 19 syl φxABifx=ARifx=BLFx=ifx=BLFx
111 102 35 sylan2 φxABx
112 105 simprd xABx<B
113 112 adantl φxABx<B
114 111 113 ltned φxABxB
115 114 neneqd φxAB¬x=B
116 115 21 syl φxABifx=BLFx=Fx
117 103 110 116 3eqtrd φxABGx=Fx
118 117 itgeq2dv φABGxdx=ABFxdx
119 3 adantr φxABF:domF
120 5 sselda φxABxdomF
121 119 120 ffvelcdmd φxABFx
122 1 2 121 itgioo φABFxdx=ABFxdx
123 100 118 122 3eqtrd φABGxdx=ABFxdx
124 73 123 jca φG𝐿1ABGxdx=ABFxdx