Step |
Hyp |
Ref |
Expression |
1 |
|
itgioocnicc.a |
|
2 |
|
itgioocnicc.b |
|
3 |
|
itgioocnicc.f |
|
4 |
|
itgioocnicc.fcn |
|
5 |
|
itgioocnicc.fdom |
|
6 |
|
itgioocnicc.r |
|
7 |
|
itgioocnicc.l |
|
8 |
|
itgioocnicc.g |
|
9 |
|
iftrue |
|
10 |
|
iftrue |
|
11 |
9 10
|
eqtr4d |
|
12 |
11
|
adantl |
|
13 |
|
iftrue |
|
14 |
|
iftrue |
|
15 |
13 14
|
eqtr4d |
|
16 |
15
|
adantl |
|
17 |
16
|
ifeq2d |
|
18 |
17
|
adantll |
|
19 |
|
iffalse |
|
20 |
19
|
ad2antlr |
|
21 |
|
iffalse |
|
22 |
21
|
adantl |
|
23 |
|
iffalse |
|
24 |
23
|
ad2antlr |
|
25 |
|
iffalse |
|
26 |
25
|
adantl |
|
27 |
1
|
adantr |
|
28 |
27
|
rexrd |
|
29 |
28
|
ad2antrr |
|
30 |
2
|
rexrd |
|
31 |
30
|
ad3antrrr |
|
32 |
2
|
adantr |
|
33 |
|
simpr |
|
34 |
|
eliccre |
|
35 |
27 32 33 34
|
syl3anc |
|
36 |
35
|
ad2antrr |
|
37 |
1
|
ad2antrr |
|
38 |
35
|
adantr |
|
39 |
30
|
adantr |
|
40 |
|
iccgelb |
|
41 |
28 39 33 40
|
syl3anc |
|
42 |
41
|
adantr |
|
43 |
|
neqne |
|
44 |
43
|
adantl |
|
45 |
37 38 42 44
|
leneltd |
|
46 |
45
|
adantr |
|
47 |
35
|
adantr |
|
48 |
2
|
ad2antrr |
|
49 |
|
iccleub |
|
50 |
28 39 33 49
|
syl3anc |
|
51 |
50
|
adantr |
|
52 |
|
eqcom |
|
53 |
52
|
notbii |
|
54 |
53
|
biimpi |
|
55 |
54
|
neqned |
|
56 |
55
|
adantl |
|
57 |
47 48 51 56
|
leneltd |
|
58 |
57
|
adantlr |
|
59 |
29 31 36 46 58
|
eliood |
|
60 |
|
fvres |
|
61 |
59 60
|
syl |
|
62 |
24 26 61
|
3eqtrrd |
|
63 |
20 22 62
|
3eqtrd |
|
64 |
18 63
|
pm2.61dan |
|
65 |
12 64
|
pm2.61dan |
|
66 |
65
|
mpteq2dva |
|
67 |
8 66
|
eqtrid |
|
68 |
|
nfv |
|
69 |
|
eqid |
|
70 |
68 69 1 2 4 7 6
|
cncfiooicc |
|
71 |
67 70
|
eqeltrd |
|
72 |
|
cniccibl |
|
73 |
1 2 71 72
|
syl3anc |
|
74 |
9
|
adantl |
|
75 |
|
limccl |
|
76 |
75 6
|
sselid |
|
77 |
76
|
ad2antrr |
|
78 |
74 77
|
eqeltrd |
|
79 |
19 13
|
sylan9eq |
|
80 |
79
|
adantll |
|
81 |
|
limccl |
|
82 |
81 7
|
sselid |
|
83 |
82
|
ad3antrrr |
|
84 |
80 83
|
eqeltrd |
|
85 |
19 21
|
sylan9eq |
|
86 |
85
|
adantll |
|
87 |
61
|
eqcomd |
|
88 |
|
cncff |
|
89 |
4 88
|
syl |
|
90 |
89
|
ad3antrrr |
|
91 |
90 59
|
ffvelrnd |
|
92 |
87 91
|
eqeltrd |
|
93 |
86 92
|
eqeltrd |
|
94 |
84 93
|
pm2.61dan |
|
95 |
78 94
|
pm2.61dan |
|
96 |
8
|
fvmpt2 |
|
97 |
33 95 96
|
syl2anc |
|
98 |
97 95
|
eqeltrd |
|
99 |
1 2 98
|
itgioo |
|
100 |
99
|
eqcomd |
|
101 |
|
ioossicc |
|
102 |
101
|
sseli |
|
103 |
102 97
|
sylan2 |
|
104 |
1
|
adantr |
|
105 |
|
eliooord |
|
106 |
105
|
simpld |
|
107 |
106
|
adantl |
|
108 |
104 107
|
gtned |
|
109 |
108
|
neneqd |
|
110 |
109 19
|
syl |
|
111 |
102 35
|
sylan2 |
|
112 |
105
|
simprd |
|
113 |
112
|
adantl |
|
114 |
111 113
|
ltned |
|
115 |
114
|
neneqd |
|
116 |
115 21
|
syl |
|
117 |
103 110 116
|
3eqtrd |
|
118 |
117
|
itgeq2dv |
|
119 |
3
|
adantr |
|
120 |
5
|
sselda |
|
121 |
119 120
|
ffvelrnd |
|
122 |
1 2 121
|
itgioo |
|
123 |
100 118 122
|
3eqtrd |
|
124 |
73 123
|
jca |
|