Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlc0yqe.q |
|
2 |
|
itsclc0yqsol.d |
|
3 |
|
simpl |
|
4 |
3
|
3anim1i |
|
5 |
|
simpr |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
orcd |
|
8 |
4 7
|
jca |
|
9 |
8
|
3anim1i |
|
10 |
1 2
|
itsclc0yqsol |
|
11 |
9 10
|
syl |
|
12 |
11
|
imp |
|
13 |
|
oveq2 |
|
14 |
13
|
oveq2d |
|
15 |
14
|
eqeq1d |
|
16 |
|
simp12 |
|
17 |
16
|
recnd |
|
18 |
|
simp13 |
|
19 |
18
|
recnd |
|
20 |
17 19
|
mulcld |
|
21 |
|
simp11l |
|
22 |
21
|
recnd |
|
23 |
|
rpre |
|
24 |
23
|
adantr |
|
25 |
24
|
adantl |
|
26 |
25
|
resqcld |
|
27 |
|
simp1l |
|
28 |
|
simp2 |
|
29 |
1
|
resum2sqcl |
|
30 |
27 28 29
|
syl2anc |
|
31 |
30
|
adantr |
|
32 |
26 31
|
remulcld |
|
33 |
|
simpl3 |
|
34 |
33
|
resqcld |
|
35 |
32 34
|
resubcld |
|
36 |
2 35
|
eqeltrid |
|
37 |
36
|
3adant3 |
|
38 |
37
|
recnd |
|
39 |
38
|
sqrtcld |
|
40 |
22 39
|
mulcld |
|
41 |
20 40
|
subcld |
|
42 |
30
|
3ad2ant1 |
|
43 |
42
|
recnd |
|
44 |
1
|
resum2sqgt0 |
|
45 |
44
|
3adant3 |
|
46 |
45
|
gt0ne0d |
|
47 |
46
|
3ad2ant1 |
|
48 |
17 41 43 47
|
divassd |
|
49 |
48
|
eqcomd |
|
50 |
49
|
oveq2d |
|
51 |
19 43 47
|
divcan3d |
|
52 |
51
|
eqcomd |
|
53 |
50 52
|
eqeq12d |
|
54 |
43 19
|
mulcld |
|
55 |
17 41
|
mulcld |
|
56 |
54 55 43 47
|
divsubdird |
|
57 |
56
|
eqcomd |
|
58 |
57
|
eqeq1d |
|
59 |
54 43 47
|
divcld |
|
60 |
55 43 47
|
divcld |
|
61 |
|
simp3l |
|
62 |
61
|
recnd |
|
63 |
22 62
|
mulcld |
|
64 |
59 60 63
|
subadd2d |
|
65 |
|
eqcom |
|
66 |
65
|
a1i |
|
67 |
54 55
|
subcld |
|
68 |
67 43 47
|
divcld |
|
69 |
|
simp11r |
|
70 |
68 62 22 69
|
divmul2d |
|
71 |
67 43 22 47 69
|
divdiv1d |
|
72 |
71
|
eqeq2d |
|
73 |
66 70 72
|
3bitr3d |
|
74 |
58 64 73
|
3bitr3d |
|
75 |
53 74
|
bitrd |
|
76 |
15 75
|
sylan9bbr |
|
77 |
1
|
oveq1i |
|
78 |
27
|
recnd |
|
79 |
78
|
sqcld |
|
80 |
28
|
recnd |
|
81 |
80
|
sqcld |
|
82 |
|
simp3 |
|
83 |
82
|
recnd |
|
84 |
79 81 83
|
adddird |
|
85 |
77 84
|
eqtrid |
|
86 |
85
|
adantr |
|
87 |
80
|
adantr |
|
88 |
33
|
recnd |
|
89 |
87 88
|
mulcld |
|
90 |
78
|
adantr |
|
91 |
36
|
recnd |
|
92 |
91
|
sqrtcld |
|
93 |
90 92
|
mulcld |
|
94 |
87 89 93
|
subdid |
|
95 |
80 80 83
|
mulassd |
|
96 |
|
recn |
|
97 |
96
|
sqvald |
|
98 |
97
|
3ad2ant2 |
|
99 |
98
|
eqcomd |
|
100 |
99
|
oveq1d |
|
101 |
95 100
|
eqtr3d |
|
102 |
101
|
adantr |
|
103 |
87 90 92
|
mul12d |
|
104 |
102 103
|
oveq12d |
|
105 |
94 104
|
eqtrd |
|
106 |
86 105
|
oveq12d |
|
107 |
90
|
sqcld |
|
108 |
107 88
|
mulcld |
|
109 |
87
|
sqcld |
|
110 |
109 88
|
mulcld |
|
111 |
108 110
|
addcomd |
|
112 |
111
|
oveq1d |
|
113 |
87 92
|
mulcld |
|
114 |
90 113
|
mulcld |
|
115 |
110 108 114
|
pnncand |
|
116 |
106 112 115
|
3eqtrd |
|
117 |
116
|
oveq1d |
|
118 |
78
|
sqvald |
|
119 |
118
|
oveq1d |
|
120 |
78 78 83
|
mulassd |
|
121 |
119 120
|
eqtrd |
|
122 |
121
|
adantr |
|
123 |
122
|
oveq1d |
|
124 |
31
|
recnd |
|
125 |
124 90
|
mulcomd |
|
126 |
123 125
|
oveq12d |
|
127 |
90 88
|
mulcld |
|
128 |
90 127 113
|
adddid |
|
129 |
128
|
eqcomd |
|
130 |
129
|
oveq1d |
|
131 |
127 113
|
addcld |
|
132 |
46
|
adantr |
|
133 |
|
simpl1r |
|
134 |
131 124 90 132 133
|
divcan5d |
|
135 |
130 134
|
eqtrd |
|
136 |
117 126 135
|
3eqtrd |
|
137 |
136
|
eqeq2d |
|
138 |
137
|
biimpd |
|
139 |
138
|
3adant3 |
|
140 |
139
|
adantr |
|
141 |
76 140
|
sylbid |
|
142 |
141
|
ex |
|
143 |
142
|
com23 |
|
144 |
143
|
adantld |
|
145 |
144
|
imp |
|
146 |
145
|
ancrd |
|
147 |
|
oveq2 |
|
148 |
147
|
oveq2d |
|
149 |
148
|
eqeq1d |
|
150 |
20 40
|
addcld |
|
151 |
17 150 43 47
|
divassd |
|
152 |
151
|
eqcomd |
|
153 |
152
|
oveq2d |
|
154 |
153 52
|
eqeq12d |
|
155 |
17 150
|
mulcld |
|
156 |
54 155 43 47
|
divsubdird |
|
157 |
156
|
eqcomd |
|
158 |
157
|
eqeq1d |
|
159 |
155 43 47
|
divcld |
|
160 |
59 159 63
|
subadd2d |
|
161 |
|
eqcom |
|
162 |
161
|
a1i |
|
163 |
54 155
|
subcld |
|
164 |
163 43 47
|
divcld |
|
165 |
164 62 22 69
|
divmul2d |
|
166 |
163 43 22 47 69
|
divdiv1d |
|
167 |
166
|
eqeq2d |
|
168 |
162 165 167
|
3bitr3d |
|
169 |
158 160 168
|
3bitr3d |
|
170 |
154 169
|
bitrd |
|
171 |
149 170
|
sylan9bbr |
|
172 |
87 89 93
|
adddid |
|
173 |
102 103
|
oveq12d |
|
174 |
172 173
|
eqtrd |
|
175 |
86 174
|
oveq12d |
|
176 |
111
|
oveq1d |
|
177 |
110 108 114
|
pnpcand |
|
178 |
175 176 177
|
3eqtrd |
|
179 |
178
|
oveq1d |
|
180 |
122
|
oveq1d |
|
181 |
180 125
|
oveq12d |
|
182 |
90 127 113
|
subdid |
|
183 |
182
|
eqcomd |
|
184 |
183
|
oveq1d |
|
185 |
127 113
|
subcld |
|
186 |
185 124 90 132 133
|
divcan5d |
|
187 |
184 186
|
eqtrd |
|
188 |
179 181 187
|
3eqtrd |
|
189 |
188
|
eqeq2d |
|
190 |
189
|
biimpd |
|
191 |
190
|
3adant3 |
|
192 |
191
|
adantr |
|
193 |
171 192
|
sylbid |
|
194 |
193
|
ex |
|
195 |
194
|
com23 |
|
196 |
195
|
adantld |
|
197 |
196
|
imp |
|
198 |
197
|
ancrd |
|
199 |
146 198
|
orim12d |
|
200 |
12 199
|
mpd |
|
201 |
200
|
ex |
|