Step |
Hyp |
Ref |
Expression |
1 |
|
rmyeq0 |
|
2 |
1
|
3adant2 |
|
3 |
|
0dvds |
|
4 |
3
|
3ad2ant3 |
|
5 |
|
frmy |
|
6 |
5
|
fovcl |
|
7 |
6
|
3adant2 |
|
8 |
|
0dvds |
|
9 |
7 8
|
syl |
|
10 |
2 4 9
|
3bitr4d |
|
11 |
10
|
adantr |
|
12 |
|
simpr |
|
13 |
12
|
breq1d |
|
14 |
12
|
oveq2d |
|
15 |
|
simpl1 |
|
16 |
|
rmy0 |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
eqtrd |
|
19 |
18
|
breq1d |
|
20 |
11 13 19
|
3bitr4d |
|
21 |
5
|
fovcl |
|
22 |
21
|
3adant3 |
|
23 |
|
dvds0 |
|
24 |
22 23
|
syl |
|
25 |
16
|
3ad2ant1 |
|
26 |
24 25
|
breqtrrd |
|
27 |
|
oveq2 |
|
28 |
27
|
breq2d |
|
29 |
26 28
|
syl5ibrcom |
|
30 |
29
|
adantr |
|
31 |
|
zre |
|
32 |
31
|
3ad2ant3 |
|
33 |
32
|
ad2antrr |
|
34 |
|
zcn |
|
35 |
34
|
3ad2ant2 |
|
36 |
35
|
ad2antrr |
|
37 |
|
simplr |
|
38 |
36 37
|
absrpcld |
|
39 |
|
modlt |
|
40 |
33 38 39
|
syl2anc |
|
41 |
|
simpll1 |
|
42 |
|
simpll3 |
|
43 |
|
simpll2 |
|
44 |
|
nnabscl |
|
45 |
43 37 44
|
syl2anc |
|
46 |
42 45
|
zmodcld |
|
47 |
|
nn0abscl |
|
48 |
47
|
3ad2ant2 |
|
49 |
48
|
ad2antrr |
|
50 |
|
ltrmynn0 |
|
51 |
41 46 49 50
|
syl3anc |
|
52 |
40 51
|
mpbid |
|
53 |
46
|
nn0zd |
|
54 |
|
rmyabs |
|
55 |
41 53 54
|
syl2anc |
|
56 |
33 38
|
modcld |
|
57 |
|
modge0 |
|
58 |
33 38 57
|
syl2anc |
|
59 |
56 58
|
absidd |
|
60 |
59
|
oveq2d |
|
61 |
55 60
|
eqtrd |
|
62 |
|
rmyabs |
|
63 |
41 43 62
|
syl2anc |
|
64 |
52 61 63
|
3brtr4d |
|
65 |
5
|
fovcl |
|
66 |
41 53 65
|
syl2anc |
|
67 |
|
nn0abscl |
|
68 |
66 67
|
syl |
|
69 |
68
|
nn0red |
|
70 |
22
|
ad2antrr |
|
71 |
|
nn0abscl |
|
72 |
70 71
|
syl |
|
73 |
72
|
nn0red |
|
74 |
69 73
|
ltnled |
|
75 |
64 74
|
mpbid |
|
76 |
|
simpr |
|
77 |
|
rmyeq0 |
|
78 |
41 53 77
|
syl2anc |
|
79 |
78
|
necon3bid |
|
80 |
76 79
|
mpbid |
|
81 |
|
dvdsleabs2 |
|
82 |
70 66 80 81
|
syl3anc |
|
83 |
75 82
|
mtod |
|
84 |
83
|
ex |
|
85 |
84
|
necon4ad |
|
86 |
30 85
|
impbid |
|
87 |
|
simpl2 |
|
88 |
|
simpl3 |
|
89 |
|
simpr |
|
90 |
|
dvdsabsmod0 |
|
91 |
87 88 89 90
|
syl3anc |
|
92 |
|
simpl1 |
|
93 |
32
|
adantr |
|
94 |
|
zre |
|
95 |
94
|
3ad2ant2 |
|
96 |
95
|
adantr |
|
97 |
|
modabsdifz |
|
98 |
93 96 89 97
|
syl3anc |
|
99 |
98
|
znegcld |
|
100 |
|
jm2.19lem4 |
|
101 |
92 87 88 99 100
|
syl121anc |
|
102 |
32
|
recnd |
|
103 |
102
|
adantr |
|
104 |
35
|
adantr |
|
105 |
104 89
|
absrpcld |
|
106 |
93 105
|
modcld |
|
107 |
106
|
recnd |
|
108 |
103 107
|
subcld |
|
109 |
108 104 89
|
divcld |
|
110 |
109 104
|
mulneg1d |
|
111 |
110
|
oveq2d |
|
112 |
109 104
|
mulcld |
|
113 |
103 112
|
negsubd |
|
114 |
108 104 89
|
divcan1d |
|
115 |
114
|
oveq2d |
|
116 |
103 107
|
nncand |
|
117 |
115 116
|
eqtrd |
|
118 |
111 113 117
|
3eqtrrd |
|
119 |
118
|
oveq2d |
|
120 |
119
|
breq2d |
|
121 |
101 120
|
bitr4d |
|
122 |
86 91 121
|
3bitr4d |
|
123 |
20 122
|
pm2.61dane |
|