Metamath Proof Explorer


Theorem jm2.27c

Description: Lemma for jm2.27 . Forward direction with substitutions. (Contributed by Stefan O'Rear, 4-Oct-2014)

Ref Expression
Hypotheses jm2.27a1 φA2
jm2.27a2 φB
jm2.27a3 φC
jm2.27c4 φC=AYrmB
jm2.27c5 D=AXrmB
jm2.27c6 Q=BAYrmB
jm2.27c7 E=AYrm2Q
jm2.27c8 F=AXrm2Q
jm2.27c9 G=A+F2F2A
jm2.27c10 H=GYrmB
jm2.27c11 I=GXrmB
jm2.27c12 J=E2C21
Assertion jm2.27c φD0E0F0G0H0I0J0D2A21C2=1F2A21E2=1G2I2G21H2=1E=J+12C2FGA2CG1FHC2CHBBC

Proof

Step Hyp Ref Expression
1 jm2.27a1 φA2
2 jm2.27a2 φB
3 jm2.27a3 φC
4 jm2.27c4 φC=AYrmB
5 jm2.27c5 D=AXrmB
6 jm2.27c6 Q=BAYrmB
7 jm2.27c7 E=AYrm2Q
8 jm2.27c8 F=AXrm2Q
9 jm2.27c9 G=A+F2F2A
10 jm2.27c10 H=GYrmB
11 jm2.27c11 I=GXrmB
12 jm2.27c12 J=E2C21
13 2 nnzd φB
14 frmx Xrm:2×0
15 14 fovcl A2BAXrmB0
16 1 13 15 syl2anc φAXrmB0
17 5 16 eqeltrid φD0
18 2z 2
19 3 nnzd φC
20 4 19 eqeltrrd φAYrmB
21 13 20 zmulcld φBAYrmB
22 6 21 eqeltrid φQ
23 zmulcl 2Q2Q
24 18 22 23 sylancr φ2Q
25 frmy Yrm:2×
26 25 fovcl A22QAYrm2Q
27 1 24 26 syl2anc φAYrm2Q
28 rmy0 A2AYrm0=0
29 1 28 syl φAYrm0=0
30 2nn 2
31 4 3 eqeltrrd φAYrmB
32 2 31 nnmulcld φBAYrmB
33 6 32 eqeltrid φQ
34 nnmulcl 2Q2Q
35 30 33 34 sylancr φ2Q
36 35 nnnn0d φ2Q0
37 36 nn0ge0d φ02Q
38 0zd φ0
39 lermy A202Q02QAYrm0AYrm2Q
40 1 38 24 39 syl3anc φ02QAYrm0AYrm2Q
41 37 40 mpbid φAYrm0AYrm2Q
42 29 41 eqbrtrrd φ0AYrm2Q
43 elnn0z AYrm2Q0AYrm2Q0AYrm2Q
44 27 42 43 sylanbrc φAYrm2Q0
45 7 44 eqeltrid φE0
46 14 fovcl A22QAXrm2Q0
47 1 24 46 syl2anc φAXrm2Q0
48 8 47 eqeltrid φF0
49 17 45 48 3jca φD0E0F0
50 2nn0 20
51 48 nn0cnd φF
52 51 sqvald φF2=FF
53 48 48 nn0mulcld φFF0
54 52 53 eqeltrd φF20
55 eluz2nn A2A
56 1 55 syl φA
57 56 nnnn0d φA0
58 57 nn0red φA
59 48 nn0red φF
60 59 59 remulcld φFF
61 rmx1 A2AXrm1=A
62 1 61 syl φAXrm1=A
63 35 nnge1d φ12Q
64 1nn0 10
65 64 a1i φ10
66 lermxnn0 A2102Q012QAXrm1AXrm2Q
67 1 65 36 66 syl3anc φ12QAXrm1AXrm2Q
68 63 67 mpbid φAXrm1AXrm2Q
69 62 68 eqbrtrrd φAAXrm2Q
70 69 8 breqtrrdi φAF
71 48 nn0ge0d φ0F
72 rmxnn A22QAXrm2Q
73 1 24 72 syl2anc φAXrm2Q
74 8 73 eqeltrid φF
75 74 nnge1d φ1F
76 59 59 71 75 lemulge12d φFFF
77 58 59 60 70 76 letrd φAFF
78 77 52 breqtrrd φAF2
79 nn0sub A0F20AF2F2A0
80 57 54 79 syl2anc φAF2F2A0
81 78 80 mpbid φF2A0
82 54 81 nn0mulcld φF2F2A0
83 uzaddcl A2F2F2A0A+F2F2A2
84 1 82 83 syl2anc φA+F2F2A2
85 9 84 eqeltrid φG2
86 eluznn0 20G2G0
87 50 85 86 sylancr φG0
88 25 fovcl G2BGYrmB
89 85 13 88 syl2anc φGYrmB
90 rmy0 G2GYrm0=0
91 85 90 syl φGYrm0=0
92 2 nnnn0d φB0
93 92 nn0ge0d φ0B
94 lermy G20B0BGYrm0GYrmB
95 85 38 13 94 syl3anc φ0BGYrm0GYrmB
96 93 95 mpbid φGYrm0GYrmB
97 91 96 eqbrtrrd φ0GYrmB
98 elnn0z GYrmB0GYrmB0GYrmB
99 89 97 98 sylanbrc φGYrmB0
100 10 99 eqeltrid φH0
101 14 fovcl G2BGXrmB0
102 85 13 101 syl2anc φGXrmB0
103 11 102 eqeltrid φI0
104 87 100 103 3jca φG0H0I0
105 zsqcl AYrmBAYrmB2
106 20 105 syl φAYrmB2
107 zmulcl 2AYrmB22AYrmB2
108 18 106 107 sylancr φ2AYrmB2
109 25 fovcl A2QAYrmQ
110 1 22 109 syl2anc φAYrmQ
111 zmulcl 2AYrmQ2AYrmQ
112 18 110 111 sylancr φ2AYrmQ
113 iddvds BAYrmBBAYrmBBAYrmB
114 21 113 syl φBAYrmBBAYrmB
115 114 6 breqtrrdi φBAYrmBQ
116 jm2.20nn A2QBAYrmB2AYrmQBAYrmBQ
117 1 33 2 116 syl3anc φAYrmB2AYrmQBAYrmBQ
118 115 117 mpbird φAYrmB2AYrmQ
119 18 a1i φ2
120 dvdscmul AYrmB2AYrmQ2AYrmB2AYrmQ2AYrmB22AYrmQ
121 106 110 119 120 syl3anc φAYrmB2AYrmQ2AYrmB22AYrmQ
122 118 121 mpd φ2AYrmB22AYrmQ
123 14 fovcl A2QAXrmQ0
124 1 22 123 syl2anc φAXrmQ0
125 124 nn0zd φAXrmQ
126 dvdsmul1 2AYrmQAXrmQ2AYrmQ2AYrmQAXrmQ
127 112 125 126 syl2anc φ2AYrmQ2AYrmQAXrmQ
128 rmydbl A2QAYrm2Q=2AXrmQAYrmQ
129 1 22 128 syl2anc φAYrm2Q=2AXrmQAYrmQ
130 2cnd φ2
131 124 nn0cnd φAXrmQ
132 110 zcnd φAYrmQ
133 130 131 132 mul32d φ2AXrmQAYrmQ=2AYrmQAXrmQ
134 129 133 eqtrd φAYrm2Q=2AYrmQAXrmQ
135 127 134 breqtrrd φ2AYrmQAYrm2Q
136 108 112 27 122 135 dvdstrd φ2AYrmB2AYrm2Q
137 4 oveq1d φC2=AYrmB2
138 137 oveq2d φ2C2=2AYrmB2
139 7 a1i φE=AYrm2Q
140 136 138 139 3brtr4d φ2C2E
141 7 27 eqeltrid φE
142 35 nngt0d φ0<2Q
143 ltrmy A202Q0<2QAYrm0<AYrm2Q
144 1 38 24 143 syl3anc φ0<2QAYrm0<AYrm2Q
145 142 144 mpbid φAYrm0<AYrm2Q
146 29 eqcomd φ0=AYrm0
147 145 146 139 3brtr4d φ0<E
148 elnnz EE0<E
149 141 147 148 sylanbrc φE
150 3 nnsqcld φC2
151 nnmulcl 2C22C2
152 30 150 151 sylancr φ2C2
153 nndivdvds E2C22C2EE2C2
154 149 152 153 syl2anc φ2C2EE2C2
155 140 154 mpbid φE2C2
156 nnm1nn0 E2C2E2C210
157 155 156 syl φE2C210
158 12 157 eqeltrid φJ0
159 5 oveq1i D2=AXrmB2
160 159 a1i φD2=AXrmB2
161 137 oveq2d φA21C2=A21AYrmB2
162 160 161 oveq12d φD2A21C2=AXrmB2A21AYrmB2
163 rmxynorm A2BAXrmB2A21AYrmB2=1
164 1 13 163 syl2anc φAXrmB2A21AYrmB2=1
165 162 164 eqtrd φD2A21C2=1
166 8 oveq1i F2=AXrm2Q2
167 7 oveq1i E2=AYrm2Q2
168 167 oveq2i A21E2=A21AYrm2Q2
169 166 168 oveq12i F2A21E2=AXrm2Q2A21AYrm2Q2
170 rmxynorm A22QAXrm2Q2A21AYrm2Q2=1
171 1 24 170 syl2anc φAXrm2Q2A21AYrm2Q2=1
172 169 171 eqtrid φF2A21E2=1
173 165 172 85 3jca φD2A21C2=1F2A21E2=1G2
174 11 oveq1i I2=GXrmB2
175 10 oveq1i H2=GYrmB2
176 175 oveq2i G21H2=G21GYrmB2
177 174 176 oveq12i I2G21H2=GXrmB2G21GYrmB2
178 rmxynorm G2BGXrmB2G21GYrmB2=1
179 85 13 178 syl2anc φGXrmB2G21GYrmB2=1
180 177 179 eqtrid φI2G21H2=1
181 12 a1i φJ=E2C21
182 181 oveq1d φJ+1=E2C2-1+1
183 141 zcnd φE
184 152 nncnd φ2C2
185 152 nnne0d φ2C20
186 183 184 185 divcld φE2C2
187 ax-1cn 1
188 npcan E2C21E2C2-1+1=E2C2
189 186 187 188 sylancl φE2C2-1+1=E2C2
190 182 189 eqtrd φJ+1=E2C2
191 190 oveq1d φJ+12C2=E2C22C2
192 183 184 185 divcan1d φE2C22C2=E
193 191 192 eqtr2d φE=J+12C2
194 48 nn0zd φF
195 81 nn0zd φF2A
196 194 195 zmulcld φFF2A
197 dvdsmul1 FFF2AFFFF2A
198 194 196 197 syl2anc φFFFF2A
199 9 oveq1i GA=A+F2F2A-A
200 57 nn0cnd φA
201 82 nn0cnd φF2F2A
202 200 201 pncan2d φA+F2F2A-A=F2F2A
203 52 oveq1d φF2F2A=FFF2A
204 81 nn0cnd φF2A
205 51 51 204 mulassd φFFF2A=FFF2A
206 202 203 205 3eqtrd φA+F2F2A-A=FFF2A
207 199 206 eqtrid φGA=FFF2A
208 198 207 breqtrrd φFGA
209 180 193 208 3jca φI2G21H2=1E=J+12C2FGA
210 zmulcl 2C2C
211 18 19 210 sylancr φ2C
212 eluzelz A2A
213 1 212 syl φA
214 82 nn0zd φF2F2A
215 1z 1
216 zsubcl 1A1A
217 215 213 216 sylancr φ1A
218 zmulcl 11A11A
219 215 217 218 sylancr φ11A
220 congid 2CA2CAA
221 211 213 220 syl2anc φ2CAA
222 54 nn0zd φF2
223 215 a1i φ1
224 3 nncnd φC
225 130 224 224 mulassd φ2CC=2CC
226 224 sqvald φC2=CC
227 226 oveq2d φ2C2=2CC
228 225 227 eqtr4d φ2CC=2C2
229 228 140 eqbrtrd φ2CCE
230 muldvds1 2CCE2CCE2CE
231 211 19 141 230 syl3anc φ2CCE2CE
232 229 231 mpd φ2CE
233 zsqcl AA2
234 213 233 syl φA2
235 peano2zm A2A21
236 234 235 syl φA21
237 236 141 zmulcld φA21E
238 dvdsmultr2 2CA21EE2CE2CA21EE
239 211 237 141 238 syl3anc φ2CE2CA21EE
240 232 239 mpd φ2CA21EE
241 183 sqvald φE2=EE
242 241 oveq2d φA21E2=A21EE
243 200 sqcld φA2
244 subcl A21A21
245 243 187 244 sylancl φA21
246 245 183 183 mulassd φA21EE=A21EE
247 242 246 eqtr4d φA21E2=A21EE
248 240 247 breqtrrd φ2CA21E2
249 51 sqcld φF2
250 183 sqcld φE2
251 245 250 mulcld φA21E2
252 187 a1i φ1
253 subsub23 F2A21E21F2A21E2=1F21=A21E2
254 249 251 252 253 syl3anc φF2A21E2=1F21=A21E2
255 172 254 mpbid φF21=A21E2
256 248 255 breqtrrd φ2CF21
257 congsub 2CF21AA2CF212CAA2CF2-A-1A
258 211 222 223 213 213 256 221 257 syl322anc φ2CF2-A-1A
259 congmul 2CF21F2A1A2CF212CF2-A-1A2CF2F2A11A
260 211 222 223 195 217 256 258 259 syl322anc φ2CF2F2A11A
261 congadd 2CAAF2F2A11A2CAA2CF2F2A11A2CA+F2F2A-A+11A
262 211 213 213 214 219 221 260 261 syl322anc φ2CA+F2F2A-A+11A
263 9 a1i φG=A+F2F2A
264 217 zcnd φ1A
265 264 mullidd φ11A=1A
266 265 oveq2d φA+11A=A+1-A
267 pncan3 A1A+1-A=1
268 200 187 267 sylancl φA+1-A=1
269 266 268 eqtr2d φ1=A+11A
270 263 269 oveq12d φG1=A+F2F2A-A+11A
271 262 270 breqtrrd φ2CG1
272 eluzelz G2G
273 85 272 syl φG
274 273 213 zsubcld φGA
275 10 89 eqeltrid φH
276 275 19 zsubcld φHC
277 jm2.15nn0 G2A2B0GAGYrmBAYrmB
278 85 1 92 277 syl3anc φGAGYrmBAYrmB
279 10 a1i φH=GYrmB
280 279 4 oveq12d φHC=GYrmBAYrmB
281 278 280 breqtrrd φGAHC
282 194 274 276 208 281 dvdstrd φFHC
283 peano2zm GG1
284 273 283 syl φG1
285 275 13 zsubcld φHB
286 jm2.16nn0 G2B0G1GYrmBB
287 85 92 286 syl2anc φG1GYrmBB
288 10 oveq1i HB=GYrmBB
289 287 288 breqtrrdi φG1HB
290 211 284 285 271 289 dvdstrd φ2CHB
291 rmygeid A2B0BAYrmB
292 1 92 291 syl2anc φBAYrmB
293 292 4 breqtrrd φBC
294 290 293 jca φ2CHBBC
295 271 282 294 jca31 φ2CG1FHC2CHBBC
296 173 209 295 jca31 φD2A21C2=1F2A21E2=1G2I2G21H2=1E=J+12C2FGA2CG1FHC2CHBBC
297 158 296 jca φJ0D2A21C2=1F2A21E2=1G2I2G21H2=1E=J+12C2FGA2CG1FHC2CHBBC
298 49 104 297 jca31 φD0E0F0G0H0I0J0D2A21C2=1F2A21E2=1G2I2G21H2=1E=J+12C2FGA2CG1FHC2CHBBC